

# Guide Ball Bushing/Linear Bushing THK General Catalog

# **Guide Ball Bushing/Linear Bushing**

# **THK** General Catalog

# **A** Product Descriptions

| Features and Types                                                |        | Model LME                                                           | . A4-50         |
|-------------------------------------------------------------------|--------|---------------------------------------------------------------------|-----------------|
| Features of the Guide Ball Bushing                                | A4-4   | Model LM-L                                                          | . A4-52         |
| Structure and Features                                            |        | Model LMF                                                           | . A4-54         |
| Examples of Changing the Linear Bushing to the Guide Ball Bushing | A4-6   | Model LMF-M (Stainless Steel Type)                                  | . A4-56         |
| Types of the Guide Ball Bushing                                   | A4-7   | Model LMF-L                                                         |                 |
| Types and Features                                                | A4-7   | Model LMF-ML (Stainless Steel Type)                                 |                 |
|                                                                   |        | Model LMK                                                           |                 |
| Point of Selection                                                | A4-8   | Model LMK-M (Stainless Steel Type)                                  |                 |
| Flowchart for Selecting a Guide Ball Bushing                      | A4-8   | Model LMK-L                                                         |                 |
| <ul> <li>Steps for Selecting a Guide Ball Bushing</li> </ul>      | A4-8   | Model LMK-ML (Stainless Steel Type).                                | . A4-68         |
| Rated Load and Nominal Life                                       | A4-9   | Model LMH                                                           |                 |
| Table of Equivalent Factors                                       | A4-12  | Model LMH-L                                                         | . A4-72         |
| Precautions To Be Taken if an Eccentric Load Is Applied           | A4-12  | Model LMIF                                                          | . A4-74         |
| Accuracy Standards                                                | A4-13  | Model LMIF-L                                                        | . <b>A</b> 4-76 |
|                                                                   |        | Model LMCF-L                                                        | . A4-78         |
| Dimensional Drawing, Dimensional Table                            |        | Model LMIK                                                          | . A4-80         |
| Model LG                                                          | A4-14  | Model LMIK-L                                                        | . A4-82         |
|                                                                   |        | Model LMCK-L                                                        | . A4-84         |
| Point of Design                                                   | A4-16  | Model LMIH                                                          | . A4-86         |
| Assembling the Guide Ball Bushing                                 | A4-16  | Model LMIH-L                                                        | . A4-88         |
|                                                                   |        | Model LMCH-L                                                        | . A4-90         |
| Options                                                           | A4-19  | Models SC6 to 30                                                    | . A4-92         |
| Lubrication                                                       | A4-19  | Models SC35 to 50                                                   | . A4-94         |
| Dust prevention                                                   | A4-19  | Model SL                                                            | . A4-96         |
| ·                                                                 |        | Model SH                                                            | . A4-98         |
| Model No.                                                         | A4-20  | Model SH-L                                                          |                 |
| Model Number Coding                                               | A4-20  | Model SK                                                            | . A4-102        |
| Ů                                                                 |        | Dedicated Shafts for Model LM                                       | A4-103          |
| Precautions on Use                                                | A4-21  | Standard LM Shafts                                                  | A 4-104         |
|                                                                   |        | Specially Machined Types                                            |                 |
| Features and Types                                                | A4-23  | Table of Rows of Balls and Masses for Clearance-adjustable Typesand |                 |
| Features of the Linear Bushing                                    |        | Open Types of the Linear Bushing                                    | . A4-105        |
| Structure and Features                                            |        | · · ·                                                               |                 |
| Types of the Linear Ball Bushing                                  |        | Point of Design                                                     | . д 4-106       |
| Types and Features                                                |        | Assembling the Linear Bushing                                       |                 |
| Classification Table                                              |        |                                                                     |                 |
|                                                                   |        | Options                                                             | A 4-113         |
| Point of Selection                                                | A4-38  | Lubrication                                                         |                 |
| Flowchart for Selecting a Linear Bushing                          |        | Material and Surface Treatment                                      |                 |
| Steps for Selecting a Linear Bushing                              |        | Dust prevention                                                     |                 |
| Rated Load and Nominal Life                                       |        | Felt Seal Model FLM                                                 |                 |
| Table of Equivalent Factors                                       |        |                                                                     |                 |
| Precautions To Be Taken if an Eccentric Load Is Applied           |        | Model No.                                                           | A 4-115         |
| Accuracy Standards                                                |        | Model Number Coding                                                 |                 |
| 7. local acy clairear ac illininininininini                       |        | Notes on Ordering                                                   |                 |
| Dimensional Drawing, Dimensional Table                            |        |                                                                     |                 |
| Model LM                                                          | A 4-44 | Precautions on Use                                                  | A 4-117         |
| Model LM-GA (Metal Retainer Type)                                 |        |                                                                     |                 |
| Model LM-MG (Stainless Steel Type)                                |        |                                                                     |                 |
|                                                                   |        |                                                                     |                 |

# **B** Support Book (Separate)

| Features and Types                                                                                                                                                                                                                                                                                                                                                                                                                                       | . <b>B</b> 4-4                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Features of the Guide Ball Bushing                                                                                                                                                                                                                                                                                                                                                                                                                       | . <b>B</b> 4-4                                                                                                                   |
| Structure and Features                                                                                                                                                                                                                                                                                                                                                                                                                                   | . <b>B</b> 4-4                                                                                                                   |
| Examples of Changing the Linear Bushing to the Guide Ball Bushing .                                                                                                                                                                                                                                                                                                                                                                                      | . <b>B</b> 4-6                                                                                                                   |
| Types of the Guide Ball Bushing                                                                                                                                                                                                                                                                                                                                                                                                                          | . <b>B</b> 4-7                                                                                                                   |
| Types and Features                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
| Point of Selection                                                                                                                                                                                                                                                                                                                                                                                                                                       | . <b>B</b> 4-8                                                                                                                   |
| Flowchart for Selecting a Guide Ball Bushing.                                                                                                                                                                                                                                                                                                                                                                                                            | . <b>B</b> 4-8                                                                                                                   |
| <ul> <li>Steps for Selecting a Guide Ball Bushing.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  |
| Rated Load and Nominal Life                                                                                                                                                                                                                                                                                                                                                                                                                              | . <b>B</b> 4-9                                                                                                                   |
| Precautions To Be Taken if an Eccentric Load Is Applied .                                                                                                                                                                                                                                                                                                                                                                                                | . <b>B</b> 4-12                                                                                                                  |
| Mounting Procedure and Maintenance.                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |
| Assembling the Guide Ball Bushing                                                                                                                                                                                                                                                                                                                                                                                                                        | . <b>В</b> 4-13                                                                                                                  |
| Options                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
| Lubrication                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |
| Dust prevention                                                                                                                                                                                                                                                                                                                                                                                                                                          | . <b>B</b> 4-16                                                                                                                  |
| Model No.                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |
| Model Number Coding                                                                                                                                                                                                                                                                                                                                                                                                                                      | . <b>B</b> 4-17                                                                                                                  |
| Precautions on Use                                                                                                                                                                                                                                                                                                                                                                                                                                       | . <b>B</b> 4-18                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                  |
| <b>7</b> ·                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |
| Features of the Linear Bushing                                                                                                                                                                                                                                                                                                                                                                                                                           | . <b>B</b> 4-20                                                                                                                  |
| Features of the Linear Bushing  • Structure and Features                                                                                                                                                                                                                                                                                                                                                                                                 | . <b>В</b> 4-20<br>. <b>В</b> 4-20                                                                                               |
| Features of the Linear Bushing  • Structure and Features  Types of the Linear Ball Bushing                                                                                                                                                                                                                                                                                                                                                               | . <b>В</b> 4-20<br>. <b>В</b> 4-20<br>. <b>В</b> 4-22                                                                            |
| Features of the Linear Bushing     Structure and Features  Types of the Linear Ball Bushing      Types and Features                                                                                                                                                                                                                                                                                                                                      | . <b>B</b> 4-20<br>. <b>B</b> 4-20<br>. <b>B</b> 4-22                                                                            |
| Features of the Linear Bushing     Structure and Features  Types of the Linear Ball Bushing      Types and Features                                                                                                                                                                                                                                                                                                                                      | . <b>B</b> 4-20<br>. <b>B</b> 4-20<br>. <b>B</b> 4-22                                                                            |
| Features of the Linear Bushing  • Structure and Features                                                                                                                                                                                                                                                                                                                                                                                                 | . <b>B</b> 4-20<br>. <b>B</b> 4-20<br>. <b>B</b> 4-22<br>. <b>B</b> 4-22<br>. <b>B</b> 4-32                                      |
| Features of the Linear Bushing  • Structure and Features                                                                                                                                                                                                                                                                                                                                                                                                 | . B4-20<br>. B4-20<br>. B4-22<br>. B4-22<br>. B4-32                                                                              |
| Structure and Features     Structure and Features     Types of the Linear Ball Bushing     Types and Features Classification Table  Point of Selection Flowchart for Selecting a Linear Bushing     Steps for Selecting a Linear Bushing                                                                                                                                                                                                                 | . B4-20<br>. B4-20<br>. B4-22<br>. B4-22<br>. B4-32<br>. B4-34<br>. B4-34                                                        |
| Structure and Features     Structure and Features Types of the Linear Ball Bushing     Types and Features Classification Table  Point of Selection Flowchart for Selecting a Linear Bushing     Steps for Selecting a Linear Bushing Rated Load and Nominal Life                                                                                                                                                                                         | . <b>B</b> 4-20 . <b>B</b> 4-22 . <b>B</b> 4-22 . <b>B</b> 4-32 . <b>B</b> 4-34 . <b>B</b> 4-34 . <b>B</b> 4-34 . <b>B</b> 4-35  |
| Structure and Features     Structure and Features Types of the Linear Ball Bushing     Types and Features Classification Table  Point of Selection Flowchart for Selecting a Linear Bushing     Steps for Selecting a Linear Bushing Rated Load and Nominal Life                                                                                                                                                                                         | . <b>B</b> 4-20 . <b>B</b> 4-22 . <b>B</b> 4-22 . <b>B</b> 4-32 . <b>B</b> 4-34 . <b>B</b> 4-34 . <b>B</b> 4-34 . <b>B</b> 4-35  |
| Structure and Features     Structure and Features     Types of the Linear Ball Bushing     Types and Features Classification Table  Point of Selection Flowchart for Selecting a Linear Bushing     Steps for Selecting a Linear Bushing     Rated Load and Nominal Life Precautions To Be Taken if an Eccentric Load Is Applied.  Mounting Procedure and Maintenance.                                                                                   | . B4-20<br>. B4-22<br>. B4-22<br>. B4-32<br>. B4-34<br>. B4-34<br>. B4-35<br>. B4-38                                             |
| Structure and Features     Structure and Features     Types of the Linear Ball Bushing     Types and Features Classification Table  Point of Selection Flowchart for Selecting a Linear Bushing     Steps for Selecting a Linear Bushing     Rated Load and Nominal Life Precautions To Be Taken if an Eccentric Load Is Applied.  Mounting Procedure and Maintenance.                                                                                   | . B4-20<br>. B4-22<br>. B4-22<br>. B4-32<br>. B4-34<br>. B4-34<br>. B4-35<br>. B4-38                                             |
| Structure and Features     Structure and Features Types of the Linear Ball Bushing     Types and Features Classification Table  Point of Selection Flowchart for Selecting a Linear Bushing     Steps for Selecting a Linear Bushing Rated Load and Nominal Life Precautions To Be Taken if an Eccentric Load Is Applied.  Mounting Procedure and Maintenance. Assembling the Linear Bushing                                                             | . B4-20<br>. B4-22<br>. B4-22<br>. B4-32<br>. B4-34<br>. B4-34<br>. B4-35<br>. B4-38<br>. B4-39<br>. B4-39                       |
| Structure and Features     Structure and Features     Types of the Linear Ball Bushing     Types and Features Classification Table  Point of Selection Flowchart for Selecting a Linear Bushing     Steps for Selecting a Linear Bushing Rated Load and Nominal Life Precautions To Be Taken if an Eccentric Load Is Applied .  Mounting Procedure and Maintenance. Assembling the Linear Bushing Lubrication  Options                                   | . B4-20<br>. B4-22<br>. B4-22<br>. B4-32<br>. B4-34<br>. B4-34<br>. B4-35<br>. B4-39<br>. B4-39<br>. B4-45                       |
| Structure and Features     Structure and Features     Types of the Linear Ball Bushing     Types and Features Classification Table  Point of Selection Flowchart for Selecting a Linear Bushing     Steps for Selecting a Linear Bushing     Rated Load and Nominal Life Precautions To Be Taken if an Eccentric Load Is Applied.  Mounting Procedure and Maintenance Assembling the Linear Bushing Lubrication  Options  Material and Surface Treatment | . B4-20<br>. B4-22<br>. B4-22<br>. B4-32<br>. B4-34<br>. B4-34<br>. B4-35<br>. B4-39<br>. B4-39<br>. B4-45                       |
| Structure and Features     Structure and Features     Types of the Linear Ball Bushing     Types and Features Classification Table  Point of Selection Flowchart for Selecting a Linear Bushing     Steps for Selecting a Linear Bushing     Rated Load and Nominal Life Precautions To Be Taken if an Eccentric Load Is Applied.  Mounting Procedure and Maintenance Assembling the Linear Bushing Lubrication  Options  Material and Surface Treatment | . B4-20<br>. B4-22<br>. B4-22<br>. B4-32<br>. B4-34<br>. B4-34<br>. B4-35<br>. B4-39<br>. B4-39<br>. B4-45                       |
| Structure and Features     Structure and Features     Types of the Linear Ball Bushing     Types and Features Classification Table  Point of Selection Flowchart for Selecting a Linear Bushing     Steps for Selecting a Linear Bushing     Rated Load and Nominal Life Precautions To Be Taken if an Eccentric Load Is Applied.  Mounting Procedure and Maintenance Assembling the Linear Bushing Lubrication  Options  Material and Surface Treatment | . B4-20<br>. B4-22<br>. B4-22<br>. B4-32<br>. B4-34<br>. B4-34<br>. B4-35<br>. B4-39<br>. B4-39<br>. B4-45                       |
| Types of the Linear Ball Bushing  • Types and Features  Classification Table  Point of Selection  Flowchart for Selecting a Linear Bushing                                                                                                                                                                                                                                                                                                               | . B4-20<br>. B4-22<br>. B4-22<br>. B4-32<br>. B4-34<br>. B4-34<br>. B4-35<br>. B4-39<br>. B4-45<br>. B4-46<br>. B4-47<br>. B4-47 |

| Notes on Ordering  | 4-49 |
|--------------------|------|
| Precautions on Use | 4-50 |

# **Features of the Guide Ball Bushing**

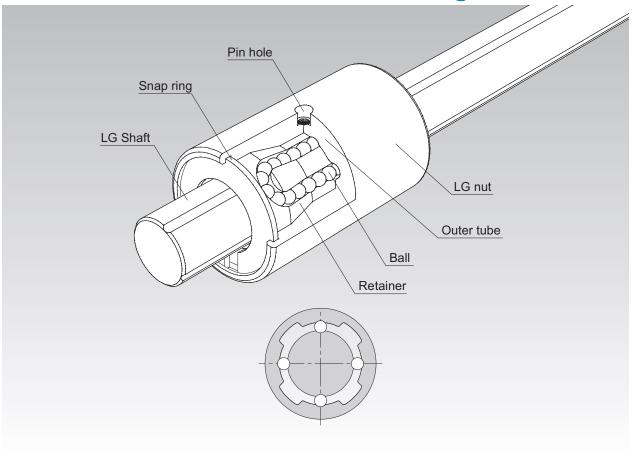



Fig.1 Structure of the Guide Ball Bushing model LG

### **Structure and Features**

Since model LG has 4 rows of circular arc grooves (raceways), it does not need a mechanism to prevent the outer tube from rotating. In addition, its load rating is much larger than Linear Bushing model LM with the same dimensions. Therefore, replacing the Linear Bushing with the Guide Ball Bushing will reduce the size and cost of the guide unit and extend the service life.

Features of the Guide Ball Bushing

### [Higher Load Rating than the Linear Bushing]

Since model LG ensures an R contact through the use of circular arc grooves for ball contact, it achieves a load rating more than twice that of point-contact Linear Bushing model LM with the same size.

### [A Rotation Stopper is Unnecessary Because of Raceways]

Since model LG has circular arc grooves, it does not need a rotation stopper required for Linear Bushing model LM, and allows the machine design to be compact.

### [Interchangeable in Dimensions with Linear Bushing Model LM]

Since the outer tube of model LG has the same outer diameter and length as that of Linear Bushing model, LM, it is possible to replace Linear Bushing model LM with Guide Ball Bushing model LG as assemblies.

### [Various Combinations of Nut and Shaft are Available (Any Combination is Allowed)]

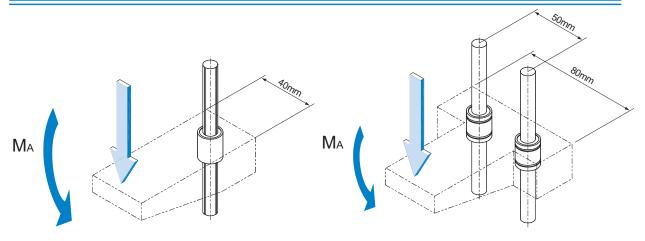
As with the Linear Bushing, any combination of the LG nut and the LG shaft of model LG is allowed.



# **Examples of Changing the Linear Bushing to the Guide Ball Bushing**

### [Advantage of using the Guide Ball Bushing 1: Longer service life]

Since model LG has a rated load more than 2.4 times the Linear Bushing with the same dimensions, replacing the Linear Bushing with model LG will increase the service life by more than 13.8 times.


Table1 Comparison of the service life between Guide Ball Bushing mode LG and Linear Bushing model LM

| Model No. | Basic dynamic load rating:<br>C [N] | Load rating ratio | Service life ratio |  |
|-----------|-------------------------------------|-------------------|--------------------|--|
| LG4S      | 335                                 | 3.8 times         | 54.8 times         |  |
| LM4       | 88.2                                | 5.6 tilles        |                    |  |
| LG6S      | 494                                 | 2.4 times         | 13.8 times         |  |
| LM6       | 206                                 | 2.4 times         | ro.o umes          |  |
| LG8S      | 796                                 | 3.0 times         | 27.0 times         |  |
| LM8       | 265                                 | 5.0 times         | 27.0 times         |  |

### [Advantage of using the Guide Ball Bushing 2: Smaller machine size]

Since the Linear Bushing is not suitable for applications where a load in the rotational direction is applied, it is necessary to use two or more Linear Bushing units in parallel or have a rotation stopper mechanism even under conditions where a torque is not applied. In contrast, the Guide Ball Bushing, which has a structure containing four rows of circular arc grooves, is operable with a single shaft and therefore contributes to downsizing the machine, unless an excessive load is applied.

### Achieves a load carrying capacity approximately three times the Linear Bushing in a half space



\* A rotation stopper mechanism using a pin is provided

One unit of Guide Ball Bushing model LG8S is used

Two units of Linear Bushing model LM8 are used

Table2 Comparison of the permissible moment between Guide Ball Bushing mode LG and Linear Bushing model LM

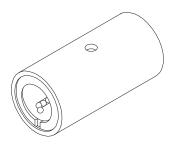
| Model No.                 | Permissible moment: Ma [N-m] |  |
|---------------------------|------------------------------|--|
| One unit of LG8S is used  | 1.46                         |  |
| Two units of LM8 are used | 0.45                         |  |

Types of the Guide Ball Bushing

# **Types of the Guide Ball Bushing**

# Types and Features

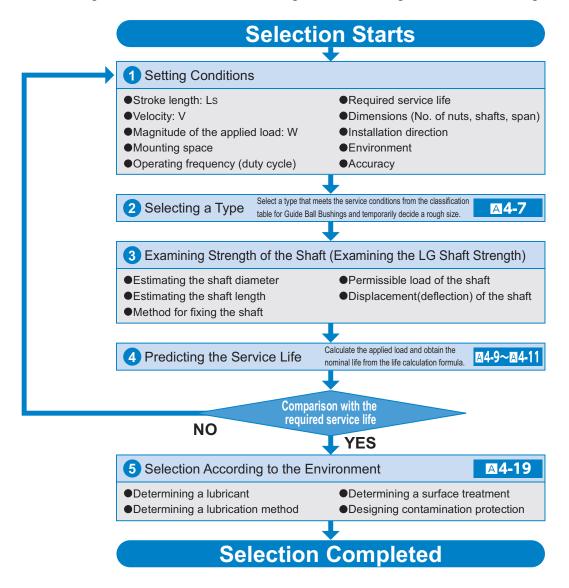
### **Model LG-S**


In this type, the diameter and the length of the LG nut are the same as that of Linear Bushing model LM. This type is dimensionally interchangeable with model LM.

### Specification Table⇒A4-14



### Model LG-L


Model LG-L is a long type in which the overall length of the LG nut is longer than that of model LG-S to increase the load carrying capacity.



# Flowchart for Selecting a Guide Ball Bushing

### Steps for Selecting a Guide Ball Bushing

The following flowchart should be used as a guide for selecting a Guide Ball Bushing.



### **Point of Selection**

**Rated Load and Nominal Life** 

# **Rated Load and Nominal Life**

### [Load Rating]

The rated load of the Guide Ball Bushing varies according to the position of balls in relation to the load direction. The basic load ratings indicated in the specification tables each indicate the value when one row of balls receiving a load are directly under the load.

If the Guide Ball Bushing is mounted so that two rows of balls evenly receive the load in the load direction, the rated load changes as shown in Table1.

Table1 Rated load of the Guide Ball Bushing

| Rows of balls | Ball position | Load Rating |
|---------------|---------------|-------------|
| 4 rows        |               | 1.41×C      |

Note: For specific values for "C" above, see the respective specification table.

### [Calculating the Nominal Life]

The nominal life of the Guide Ball Bushing is obtained using the following equation.

$$L = \left(\frac{f_{\text{H}} \cdot f_{\text{T}} \cdot f_{\text{C}}}{f_{\text{W}}} \cdot \frac{C}{P_{\text{C}}}\right)^{3} \times 50$$

L : Nominal life (km)

C : Basic dynamic load rating (N)

P<sub>c</sub> : Calculated load (N)

f<sub>⊤</sub> : Temperature factor

fc : Contact factor (see Table 2 on A4-11)

fw : Load factor (see Table3 on **A4-11**)

 $f_{\text{H}}$ : Hardness factor (see Fig.1)

### When a Moment Load is Applied to a Single Nut or Two Nuts in Close Contact with Each Other

When a moment load is applied to a single nut or two nuts in close contact with each other, calculate the equivalent radial load at the time the moment is applied.

(N)

### $P_u = K \cdot M$

P<sub>u</sub> : Equivalent radial load

(with a moment applied)

K : Equivalent factors

(see Table4 to Table5 on **A4-12**)

M : Applied moment (N-mm)

However, "P<sub>u</sub>" is assumed to be within the basic static load rating (C₀).

### When a Moment Load and a Radial Load are Simultaneously Applied

When a moment and a radial load are applied simultaneously, calculate the service life based on the sum of the radial load and the equivalent radial load.

### ■f<sub>H</sub>: Hardness Factor

To maximize the load capacity of the Guide Ball Bushing, the hardness of the raceways needs to be between 58 to 64 HRC.

If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor ( $f_H$ ).

Normally,  $f_H$  = 1.0 since the Guide Ball Bushing has sufficient hardness.

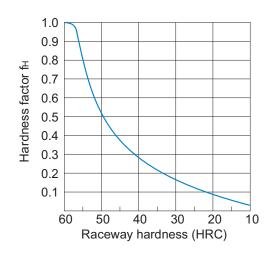



Fig.1 Hardness Factor (f<sub>H</sub>)

### Point of Selection

**Rated Load and Nominal Life** 

### ■f<sub>T</sub>:Temperature Factor

The temperature of the environment where the Guide Ball Bushing is used must be 80°C or below. Therefore, adopt a temperature factor  $f_T = 1.0$ .

The Guide Ball Bushing does not support high temperature. Therefore, if the environment temperature exceeds 80°C, it is necessary to use another product.

### ■f<sub>c</sub>: Contact Factor

When multiple nuts are used in close contact with each other, their linear motion is affected by moments and mounting accuracy, making it difficult to achieve uniform load distribution. In such applications, multiply the basic load rating (C) and (C<sub>0</sub>) by the corresponding contact factor in Table2.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table2.

| Number of nuts in close contact with each other | Contact factor fc |  |  |
|-------------------------------------------------|-------------------|--|--|
| 2                                               | 0.81              |  |  |
| 3                                               | 0.72              |  |  |
| 4                                               | 0.66              |  |  |
| 5                                               | 0.61              |  |  |
| Normal use                                      | 1                 |  |  |

Table2 Contact Factor (fc)

### ■fw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop motion. Therefore, when loads applied on a Guide Ball Bushing cannot be measured, or when speed and impact have a significant influence, divide the basic load rating (C) or (C<sub>0</sub>) by the corresponding load factor in Table3.

Table3 Load Factor (fw)

| Vibrations/<br>impact | Speed(V)                                                  | f <sub>w</sub> |
|-----------------------|-----------------------------------------------------------|----------------|
| Faint                 | Very low<br>V≦0.25m/s                                     | 1 to 1.2       |
| Weak                  | Slow<br>0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m> | 1.2 to 1.5     |
| Medium                | Medium<br>1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>    | 1.5 to 2       |
| Strong                | High<br>V>2m/s                                            | 2 to 3.5       |

### [Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

$$L_{h} = \frac{L \times 10^{3}}{2 \times \ell_{s} \times n_{1} \times 60}$$

: Service life time (h)

 $\ell_{ extsf{S}}$ : Stroke length (m)

: Number of reciprocations per minute  $n_1$ 

(min<sup>-1</sup>)

# **Table of Equivalent Factors**

Table4 Equivalent Factors of Model LG-S

Table5 Equivalent Factors of Model LG-L

| Model No. | Equivalent factor: K |               |  |  |
|-----------|----------------------|---------------|--|--|
| Model No. | Single nut           | Double blocks |  |  |
| LG 4S     | 1.062                | 0.193         |  |  |
| LG 6S     | 0.885                | 0.121         |  |  |
| LG 8S     | 0.708                | 0.096         |  |  |

| Model No. |       | Equivalent factor: K |  |  |
|-----------|-------|----------------------|--|--|
|           |       | Single nut           |  |  |
| LG 4L     |       | 0.733                |  |  |
|           | LG 6L | 0.465                |  |  |
|           | LG 8L | 0.442                |  |  |

# Precautions To Be Taken if an Eccentric Load Is Applied

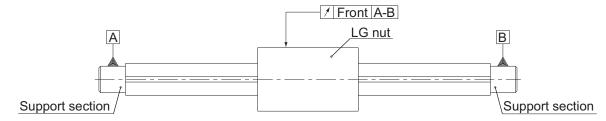
Model LG achieves a much higher load-carrying capacity in receiving the eccentric load (moment and torque) than Linear Bushing model LM because of 4 rows of raceways. However, under conditions where the eccentric load is larger, the product may result in poor operation or early failure. In such cases, we recommend using Ball Spline model LBS or LT, both of which have larger load-carrying capacities (see **A3-50** onward for model LBS, or **A3-74** onward for model LT).

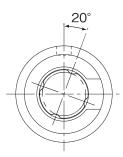
### **Point of Selection**

**Accuracy Standards** 

# **Accuracy Standards**

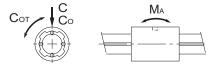
[Guide Ball Bushing]





Table6 Run-out of the outer diameter of the nut relative to the support section of the shaft

Unit:  $\mu m$ 

| Overall shaft length (mm) |  | Run-out(max)* |
|---------------------------|--|---------------|
| - 200 or less             |  | 72            |
| Above 200 250 or less     |  | 133           |


<sup>\*:</sup> The value if the radial clearance is zero

### **Model LG**



|           | Ch off   |                | Nut dimensions |        |           |          |       |
|-----------|----------|----------------|----------------|--------|-----------|----------|-------|
| Shaft     |          | Outer diameter |                | Length |           | Pin hole |       |
| Model No. | Diameter |                |                |        |           | b        | t     |
|           | D₀ h7    | D              | Tolerance      | L      | Tolerance | +0.05    | +0.08 |
|           |          |                |                |        |           | 0        | -0.02 |
| LG4S      | 4        | 8              | 0              | 12     | 0         | 1.2      | 0.8   |
| LG4L      | 4        | 8              | -0.009         | 19     | -0.12     | 1.2      | 0.8   |
| LG6S      | 6        | 12             |                | 19     |           | 1.5      | 1.2   |
| LG6L      | 0        | 12             | 0              | 27     | 0         | 1.5      | 1.2   |
| LG8S      | 8        | 15             | -0.011         | 24     | -0.2      | 2        | 1.5   |
| LG8L      | 0        | 15             |                | 30     |           | 2        | 1.5   |

Note) The basic load ratings each indicate the value when one row of balls receiving a load are directly under the load. The permissible torques each represent a reference value when the radial clearance is maximum (+10 $\mu$ m). The permissible moments each indicate a reference value when the radial clearance is the maximum (+10 $\mu$ m) with one row of balls receiving a load being directly under the load.



### Model number coding

1 LG shaft only

-100L Model No.

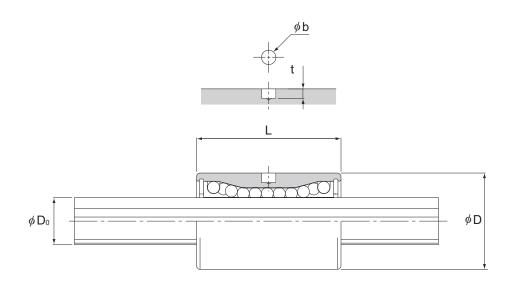
Overall LG shaft length

2 LG nut only

Model No.

3 A set product consisting of an LG shat and an LG nut

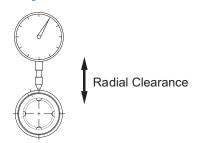
+100L


Model No. Overall LG shaft length

Number of LG nuts on one shaft (no symbol for one nut)

Note) Model LG guide ball bushing available as LG shaft ①, or the LG nut ② separate.

A set consisting of an ③ LG shaft + an LG nut is also available if so desired.


A special radial clearance, designated grease application (standard type is applied only with antirust oil) and surface treatment (THK AP-C treatment, THK AP-CF treatment, THK AP-HC treatment) are also available. Contact THK for details.



Unit: mm

|  | Basic load rating (radial)  C C N N |      | Permissible torque     | Permissible moment    | Mass |
|--|-------------------------------------|------|------------------------|-----------------------|------|
|  |                                     |      | С <sub>от</sub><br>N-m | M <sub>A</sub><br>N-m | g    |
|  | 335                                 | 473  | 0.066                  | 0.33                  | 2.5  |
|  | 466                                 | 757  | 0.105                  | 0.71                  | 4.0  |
|  | 494                                 | 681  | 0.241                  | 0.74                  | 10.5 |
|  | 860                                 | 1499 | 0.530                  | 1.71                  | 14.0 |
|  | 796                                 | 1065 | 0.838                  | 1.46                  | 16.5 |
|  | 1203                                | 1916 | 1.509                  | 2.66                  | 22.0 |

### [Radial Clearance]



Radial Clearance Unit: µm Normal clearance 0 to +10

Measurement of a radial clearance

### [LG Shaft]

Material: SUJ2

Hardness: 56 to 64 HRC



| r | Standard length | Maximum manufacturing | ١ |
|---|-----------------|-----------------------|---|
|   | L               | length                | 1 |

| Model No. | diameter | Standard length |     | manufacturing | IVIASS |        |       |
|-----------|----------|-----------------|-----|---------------|--------|--------|-------|
|           | D₀ h7    |                 | I   | _             |        | length | (g/m) |
| LG4       | 4        | 100             | 150 | _             |        | 150    | 95    |
| LG6       | 6        | 100             | 150 | 200           | _      | 200    | 220   |
| LG8       | 8        | 100             | 150 | 200           | 250    | 250    | 390   |

LG shaft dimensions

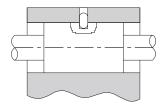
Shaft

Unit: mm

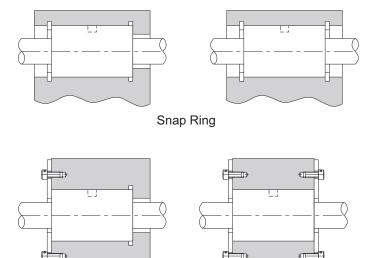
# **Assembling the Guide Ball Bushing**

### [Inner Diameter of the Housing]

Table1 shows recommended housing inner-diameter tolerance for the Guide Ball Bushing. When fitting the Guide Ball Bushing with the housing, loose fit is normally recommended. If the clearance needs to be smaller, provide transition fit.


Table1 Housing Inner-diameter Tolerance

| General conditions                            | H6 |
|-----------------------------------------------|----|
| If the accuracy does not need to be very high | H7 |


### [Mounting the Nut]

Although the Guide Ball Bushing does not require a large amount of strength for securing it in the LG shaft direction, do not support the nut only with driving fitting. For the housing inner-diameter tolerance, see Table1.

### Mounting model LG using a pin



### Mounting model LG as with the conventional Linear Bushing

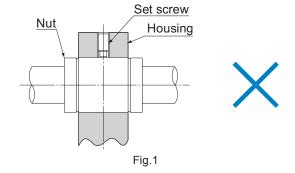


Stopper Plate

### **Point of Design**

### **Assembling the Guide Ball Bushing**

### ■Snap Ring for Installation


To secure the Guide Ball Bushing model LG, snap rings indicated in Table2 are available.

|           | Snap ring         |                   |  |  |
|-----------|-------------------|-------------------|--|--|
| Model No. | For inner surface |                   |  |  |
| Model No. | Needle snap ring  | C-shape snap ring |  |  |
| LG 4      | 8                 | _                 |  |  |
| LG 6      | 12                | 12                |  |  |
| LG 8      | 15                | 15                |  |  |

Table2 Types of Snap Rings

### ■Set Screws Not Allowed

Securing the nut by pressing the outer surface with one set screw as shown in Fig.1 will cause the nut to be deformed.



### [Incorporating the Nut]

When incorporating the Guide Ball Bushing into a housing, use a jig and drive in the nut, or use a flatter plate and gently hit the nut, instead of directly hitting the side plate or the seal. (see Fig.2).

Unit: mm

| Model No.   | dr  | Tolerance    |
|-------------|-----|--------------|
| LG 4S/LG 4L | 3.6 |              |
| LG 6S/LG 6L | 5.6 | -0.1<br>-0.3 |
| LG 8S/LG 8L | 7.5 | 0.0          |

# D: Nut outer diameter dr: Bore diameter

Fig.2

### [Inserting the LG Shaft]

When inserting the LG shaft into the Guide Ball Bushing, align the center of the shaft with that of the nut and gently insert the shaft straightforward into the nut. If the shaft is slanted while it is inserted, balls may fall off or the retainer may be deformed (see Fig.3).

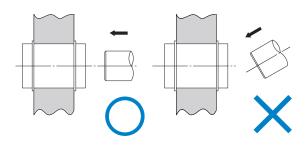



Fig.3

### [When Under a Moment Load]

When using the Guide Ball Bushing, make sure that the load is evenly distributed on the whole ball raceway. In particular, if a moment load is applied, use two or more Guide Ball Bushing units on the same LG shaft and secure an adequately large distance between the units.

If using the Guide Ball Bushing under a moment load, also calculate the equivalent radial load and identify the correct model number. (See **A4-10**.)

# **Options**

### **Guide Ball Bushing (Options)**

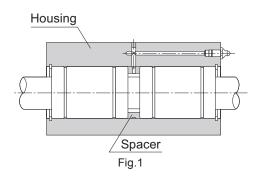
# Lubrication

The Guide Ball Bushing requires grease or oil as a lubricant for its operation.

### [Grease Lubrication]

Before mounting the product onto the LG shaft, apply grease to each row of balls inside the Guide Ball Bushing.

Thereafter apply grease as necessary, in accordance with usage and other conditions noted above, or attach housing as shown in Fig.1, or apply grease directly to the LG shaft.


We recommend using high-quality lithium-soap group grease No. 2.

### [Oil Lubrication]

To lubricate, apply lubricant to the LG shaft one drop at a time, as needed, or attach housing as shown in Fig.1, in the same manner as when lubricating with grease.

Commonly used lubricants include turbine oil, machine oil, and spindle oil.

In addition to the procedures described the above, an oil hole or grease nipple can also be used for lubrication. For further information, contact THK.



# **Dust prevention**

Entrance of dust or other foreign material into the Guide Ball Bushing will cause abnormal wear or shorten the service life. When entrance of dust or other foreign material is a possibility, it is important to select effective seals and/or dust-control device that meets the service environment conditions. In addition, THK produces round bellows. Contact us for details.

### **Model Number Coding**

Model number configurations differ depending on the model features. Refer to the corresponding sample model number configuration.

### [Guide Ball Bushing]

Estimates and orders should be made for LG shafts alone or LG nuts alone in principle.

A set consisting of an LG shaft and an LH nut is also available if desired by the customer. Contact THK for details.

### Models LG-S and LG-L



Combination of
 LG shaft and LG nut
 Model No. Overall LG shaft length (in mm) of LG nut
 Number of LG nuts on one shaft (no symbol for one nut)

A special radial clearance, designated grease application (standard product is applied with antirust oil only), and surface treatment (THK AP-C treatment, THK AP-HC treatment) are also available. Contact THK for details.

### **Precautions on Use**

### **Guide Ball Bushing**

### [Handling]

- (1) Disassembling each part may cause dust to enter the system or degrade mounting accuracy of parts. Do not disassemble the product.
- (2) Take care not to drop or strike the Guide Ball Bushing. Doing so may cause injury or damage. Giving an impact to it could also cause damage to its function even if the product looks intact.
- (3) When handling the product, wear protective gloves, safety shoes, etc., as necessary to ensure safety.

### [Precautions on Use]

- (1) Prevent foreign material, such as cutting chips or coolant, from entering the product. Failure to do so may cause damage.
- (2) If the product is used in an environment where cutting chips, coolant, corrosive solvents, water, etc., may enter the product, use bellows, covers, etc., to prevent them from entering the product.
- (3) Do not use the product at temperature of 80°C or higher. Exposure to higher temperatures may cause the resin/rubber parts to deform/be damaged.
- (4) If foreign material such as cutting chips adheres to the product, replenish the lubricant after cleaning the product.
- (5) Micro-strokes tend to obstruct oil film to form on the raceway in contact with the rolling element, and may lead to fretting corrosion. Take consideration using grease offering excellent fretting prevention. It is also recommended that a stroke movement corresponding to the length of the outer cylinder be made on a regular basis to make sure oil film is formed between the raceway and rolling element.
- (6) Do not use undue force when fitting parts (pin, key, etc.) to the product. This may generate permanent deformation on the raceway, leading to loss of functionality.
- (7) Insert the shaft straight through the opening. Inserting the shaft at an angle can introduce foreign matter, damage internal components, or cause balls to fall out.
- (8) Using this product with any balls removed may result in premature damage.
- (9) Please contact THK if any balls fall out; do not use the product if any balls are missing.
- (10) If an attached component is insufficiently rigid or mounted incorrectly, the bearing load will be concentrated at one location and performance will decline significantly. Make sure the housing and base are sufficiently rigid, the anchoring bolts are strong enough, and the component is mounted correctly.

### [Lubrication]

- (1) Thoroughly wipe off anti-rust oil and feed lubricant before using the product.
- (2) Do not mix different lubricants. Mixing greases using the same type of thickening agent may still cause adverse interaction between the two greases if they use different additives, etc.
- (3) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, use the grease appropriate for the specification/environment.
- (4) To lubricate the product, apply lubricant directly to the raceway surface and execute a few preliminary strokes to ensure that the interior is fully lubricated.
- (5) The consistency of grease changes according to the temperature. Take note that the slide resistance of the Guide Ball Bushing also changes as the consistency of grease changes.

- (6) After lubrication, the slide resistance of the Guide Ball Bushing may increase due to the agitation resistance of grease. Be sure to perform a break-in to let the grease spread fully, before operating the machine.
- (7) Excess grease may scatter immediately after lubrication, so wipe off scattered grease as necessary.
- (8) The properties of grease deteriorate and its lubrication performance drops over time, so grease must be checked and added properly according to the use frequency of the machine.
- (9) The greasing interval varies depending on the use condition and service environment. Set the final lubrication interval/amount based on the actual machine.

### [Assembling the LG Nut with the LG Shaft of the Guide Ball Bushing]

- (1) When assembling the LG nut with the LG shaft, align the position of the balls inside the LG nut with the position of the groove of the LG shaft, then insert the LG shaft into the LG nut straightforward and gradually. If the LG shaft is tilted when it is inserted, balls may bounce out or damage the circulating part.
- (2) If the LG shaft is stuck in the middle of insertion, do not force it into the nut. Instead, but pull it out first, re-check the ball position and the LG shaft groove position, and then insert it straightforward and gradually.
- (3) After assembling the LG nut with the LG shaft, check that the LG nut or the LG shaft smoothly moves. If the shaft was forced into the nut, function could be lost even if the product looks intact.

### [Storage]

When storing the Guide Ball Bushing, enclose it in a package designated by THK and store it in a room while avoiding high temperature, low temperature and high humidity.

### [Disposal]

Dispose of the product properly as industrial waste.

### **Linear Bushing**

# **Features of the Linear Bushing**




Fig.1 Structure of Linear Bushing Model LM···UU

### **Structure and Features**

Linear Bushing model LM is a linear motion system used in combination with a cylindrical LM shaft to perform infinite straight motion. The balls in the loaded area of the nut are in point contact with the LM shaft. This allows straight motion with minimal friction resistance and achieves highly accurate and smooth motion despite the small permissible load.

The nut uses high-carbon chromium bearing steel and its outer and inner surfaces are ground after being heat-treated.

The Linear Bushing is used in a broad array of applications, such as slide units of precision equipment including OA equipment and peripherals, measuring instruments, automatic recorders and digital 3D measuring instruments, industrial machines including multi-spindle drilling machine, punching press, tool grinder, automatic gas cutting apparatus, printing machine, card selector and food packing machine.

### [Interchangeability]

Since the dimensional tolerances of the Linear Bush's components are standardized, they are interchangeable. The LM shaft is machined through cylindrical grinding, which can easily be performed, and it allows highly accurate fitting clearance to be achieved.

### [Highly Accurate Retainer Plate]

Since the retainer, which guides three to eight rows of balls, is integrally molded, it is capable of accurately guiding the balls in the traveling direction and achieving stable running accuracy.

Small-diameter types use integrally molded retainers made of synthetic resin. It reduces noise generated during operation and allows for superb lubrication.

### [Wide Array of Types]

A wide array of types are available, such as standard type, clearance-adjustable type, open type, long type, fitted flange type, and flanged linear bushing, allowing the user to select a type that meets the intended use.

**Features of the Linear Bushing** 

# Types of the Linear Ball Bushing

# **Types and Features**

# **Standard Type**

With the Linear Bushing nut having the most accurate cylindrical shape, this type is widely used.

There are two series of the Linear Bushing in dimensional group.

- Model LM Metric units series used most widely in Japan
- Model LM-MG Stainless steel version of type LM
- Model LME
   Metric units series commonly used in Europe

### Specification Table⇒A4-44/A4-48/A4-50



Standard Type

# **Open Type**

The nut is partially cut open by one row of balls (50° to 80°). This enables the Linear Bushing to be used even in locations where the LM shaft is supported by a column or fulcrum. In addition, a clearance can easily be adjusted. Models LM-OP/LME-OP Model LM-MGA-OP

Specification Table⇒A4-44/A4-48/A4-50



Open Type

# **Clearance-adjustable Type**

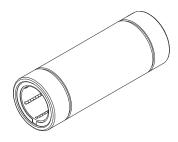
This type has the same dimensions as the standard type, but the nut has a slit in the direction of the LM shaft. This allows the linear bushing to be installed in a housing whose inner diameter is adjustable, and enables the clearance between the LM shaft and the housing to easily be adjusted.

Models LM-AJ/LME-AJ Model LM-MG-AJ

### Specification Table⇒A4-44/A4-48/A4-50



Clearance-adjustable Type


Types of the Linear Ball Bushing

# **Long Type**

Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present and reduces man-hours in installation.

Model LM-L····Standard type

### Specification Table⇒A4-52



Long Type

# Flanged Type (Round)

The nut of the standard type Linear Bushing is integrated with a flange. This enables the Linear Bushing to be directly mounted onto the housing with bolts, thus achieving easy installation.

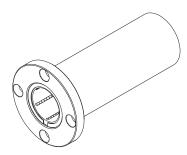
Model LMF·····Standard type

Model LMF-M·····Made of stainless steel

### Specification Table⇒A4-54/A4-56



Flanged Type (Round)


# Flanged Type (Round) - Long

The nut of the long type Linear Bushing is integrated with a flange. This enables the Linear Bushing to be directly mounted onto the housing with bolts, thus achieving easy installation. Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

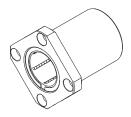
Model LMF-L····Standard type

Model LMF-ML·····Made of stainless steel

### Specification Table⇒A4-58/A4-60



Flanged Type (Round) - Long


# Flanged Type (Square)

Like model LMF, this type also has a flange, but the flange is cut to a square shape. Since the height is lower than the circular flange type, compact design is allowed.

Model LMK·····Standard type

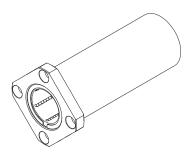
Model LMK-M·····Made of stainless steel

### Specification Table⇒A4-62/A4-64



Flanged Type (Square)

# Flanged Type (Square) - Long


Like model LMF-L, this type also has a flange, but the flange is cut to a square shape. Since the height is lower than the circular flange type, compact design is allowed.

Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

Model LMK-L·····Standard type

Model LMK-ML·····Made of stainless steel

### Specification Table⇒A4-66/A4-68



Flanged Type (Square) - Long

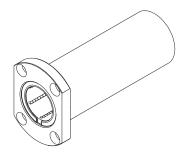
Types of the Linear Ball Bushing

# Flanged Type (Cut Flange)

The nut is integrated with a cut flange. Since the height is lower than model LMK, compact design is allowed. Since the rows of balls in the Linear Bushing are arranged so that two rows receive the load from the flat side, a long service life can be achieved.

Model LMH·····Standard type

### Specification Table⇒A4-70




Flanged Type (Cut Flange)

# Flanged Type (Cut Flange) - Long

The flange is a cut flange and lower than model LMK-L, allowing compact design. Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present. Since the rows of balls in the Linear Bushing are arranged so that two rows receive the load from the flat side, a long service life can be achieved.

Model LMH-L····Standard type



Flanged Type (Cut Flange) - Long

# **Fitted Flanged Type (Round)**

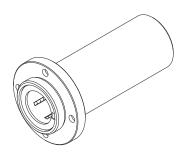
Since the fitted part is short, the linear bushing tends not to protrude into the other side, so space is saved on the side opposite the mounting.

Model LMIF ..... Standard type

### Specification Table⇒A4-74



Fitted Flanged Type (Round)


# Fitted Flanged Type (Round) - Long

Since the fitted part is short, the linear bushing tends not to protrude into the other side, so space is saved on the side opposite the mounting.

Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

Model LMIF-L ..... Standard Type

### Specification Table⇒**△4-76**



Fitted Flanged Type (Round) - Long

# Center Flanged Type (Round) - Long

Specification Table⇒**△4-78** 

Since an LMIF-L flange is installed in the center for this type and and work can be attached close to the center of the linear bushing unit, both load and space are distributed on both sides of the flange in a balanced manner. This is a good solution for when you want to make the stroke equal on the left and right.

Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

Model LMCF-L ..... Standard Type



Center Flanged Type (Round) - Long

Types of the Linear Ball Bushing

# **Fitted Flanged Type (Square)**

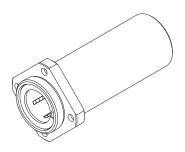
Like model LMIF, this type also has a flange, but the flange is cut to a square shape. The height is lower than the circular flange type, allowing a compact design.

Model LMIK · · · · Standard Type

### Specification Table⇒A4-80



Fitted Flanged Type (Square)


# Fitted Flanged Type (Square) - Long

Like model LMIF-L, this type also has a flange, but the flange is cut to a square shape. The height is lower than the circular flange type, allowing a compact design.

Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

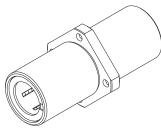
Model LMIK-L ..... Standard Type

### Specification Table⇒A4-82



Fitted Flanged Type (Square) - Long

# **Center Flanged Type (Square) - Long**


Like model LMCF-L, this type also has a flange, but the flange is cut to a square shape. The height is lower than the circular flange type, allowing a compact design.

Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

Model LMCK-L ..... Standard Type



Specification Table⇒A4-84



Center Flanged Type (Square) - Long

# **Fitted Flanged Type (Ovular)**

This type features a flange cut into an ovular shape. The height is lower than model LMIF, allowing a compact design.

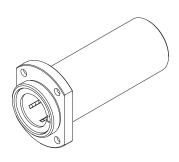
Because the rows of Linear Bushing balls are arranged such that flat loads are borne in two rows, superior lifetime is achieved.

Model LMIH · · · · Standard Type

### Specification Table⇒A4-86



Fitted Flanged Type (Ovular)


# Fitted Flanged Type (Ovular) - Long

This type features a flange cut into an ovular shape. The height is lower than model LMIF-L, allowing a compact design. Because the rows of Linear Bushing balls are arranged such that flat loads are borne in two rows, superior lifetime is achieved.

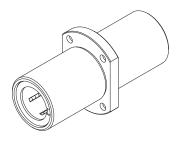
Standard type retainers are embedded together in groups of two, making them ideal for areas with moment loads.

Model LMIH-L ..... Standard Type

### Specification Table⇒A4-88



Fitted Flanged Type (Ovular) - Long


# Center Flanged Type (Ovular) - Long

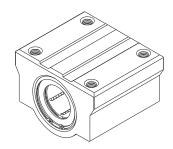
This type features a flange cut into an ovular shape. The height is lower than Model LMCF, allowing a compact design. Because the rows of Linear Bushing balls are arranged such that flat loads are borne in two rows, superior lifetime is achieved.

Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

Model LMCH-L ..... Standard Type

Specification Table⇒A4-90

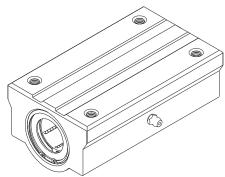



Center Flanged Type (Ovular) - Long

Types of the Linear Ball Bushing

# **Linear Bushing Model SC**

It is a case unit where the standard type of Linear Bushing is incorporated into a small, light-weight aluminum casing. This model can easily be mounted simply by securing it to the table with bolts.

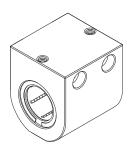

### Specification Table⇒A4-92



Linear Bushing Model SC

# Linear Bushing (Long) Model SL

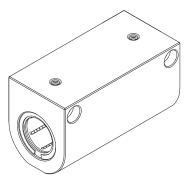
A long version of model SC, this model contains two units of the standard type Linear Bushing in an aluminum casing.




Linear Bushing (Long) Model SL

# **Linear Bushing Model SH**

It is a case unit where the standard type of Linear Bushing is incorporated into a smaller and lighter aluminum casing than model SC. This model allows even more compact design than model SC. It also has flexibility in mounting orientation. Additionally, it is structured so that two rows of balls receive the load from the top of the casing, allowing a long service life to be achieved.


### Specification Table⇒A4-98

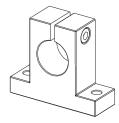


Linear Bushing Model SH

# Linear Bushing (Long) Model SH-L

A long version of model SH, this model is a case unit that contains two units of the standard type Linear Bushing in an aluminum casing.




Linear Bushing (Long) Model SH-L

Types of the Linear Ball Bushing

# LM Shaft End Support Model SK

An aluminum-made light fulcrum for securing an LM shaft. The LM shaft mounting section has a slit, enabling the linear bushing to firmly secure an LM shaft using bolts.

### Specification Table⇒A4-102



LM Shaft End Support Model SK

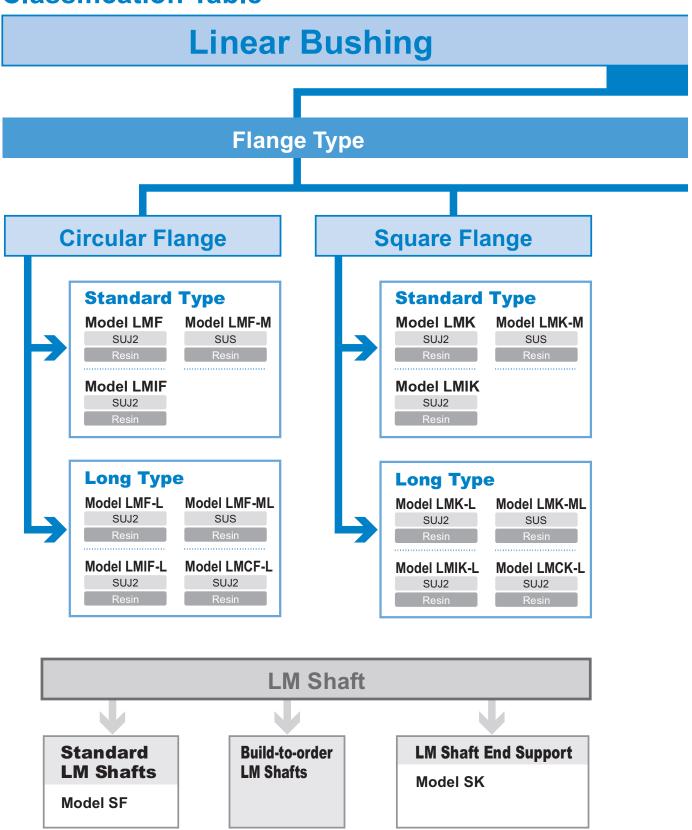
# **Standard LM Shafts**

THK manufactures high quality, dedicated LM shafts for Linear Bushing model LM series.

### Specification Table⇒A4-104

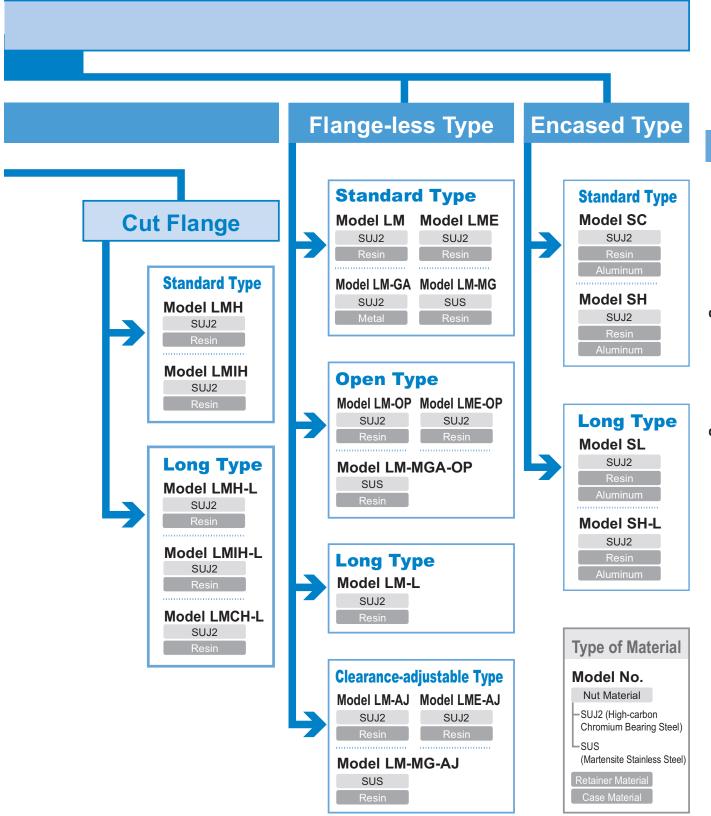


Standard LM Shafts


# **Build-to-order LM Shafts**

THK also manufactures hollow LM shafts and specially machined shafts at your request.

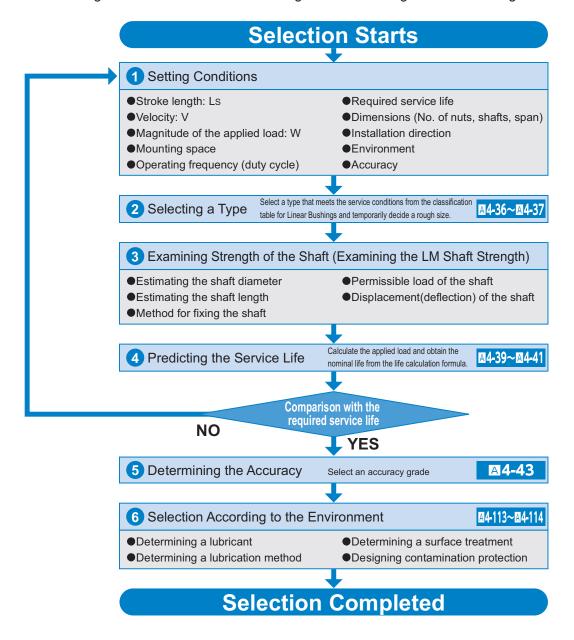



Build-to-order LM Shafts

# **Classification Table**



### **Features and Types**


**Classification Table** 



# Flowchart for Selecting a Linear Bushing

### **Steps for Selecting a Linear Bushing**

The following flowchart should be used as a guide for selecting a Linear Bushing.



### **Point of Selection**

**Rated Load and Nominal Life** 

# **Rated Load and Nominal Life**

### [Load Rating]

The rated load of the Linear Bushing varies according to the position of balls in relation to the load direction. The basic load ratings indicated in the specification tables each indicate the value when one row of balls receiving a load are directly under the load.

If the Linear Bushing is mounted so that two rows of balls evenly receive the load in the load direction, the rated load changes as shown in Table1.

Table1 Rated load of the Linear Bushing

| Rows of balls | Ball position | Load Rating |
|---------------|---------------|-------------|
| 3 rows        |               | 1×C         |
| 4 rows        |               | 1.41×C      |
| 5 rows        |               | 1.46×C      |
| 6 rows        |               | 1.28×C      |

For specific values for "C" above, see the respective specification table.

(see Fig.1)

#### [Calculating the Nominal Life]

The nominal life of the Linear Bushing is obtained using the following equation.

$$L = \left(\frac{f_{\text{H}} \cdot f_{\text{T}} \cdot f_{\text{C}}}{f_{\text{W}}} \cdot \frac{C}{P_{\text{C}}}\right)^{3} \times 50$$

$$L : Nominal life (km)$$

$$C : Basic dynamic load rating (N)$$

$$P_{\text{C}} : Calculated load (N)$$

$$f_{\text{T}} : Temperature factor (see Fig.2 on  $\triangle 4\text{-}41$ )
$$f_{\text{C}} : Contact factor (see Table2 on  $\triangle 4\text{-}41$ )
$$f_{\text{W}} : Load factor (see Table3 on  $\triangle 4\text{-}41$ )$$$$$$

### When a Moment Load is Applied to a Single Nut or Two Nuts in Close Contact with Each Other

f⊢

: Hardness factor

When a moment load is applied to a single nut or two nuts in close contact with each other, calculate the equivalent radial load at the time the moment is applied.

$$P_u = K \cdot M$$

P<sub>u</sub>: Equivalent radial load (N) (with a moment applied)

K : Equivalent factors

(see Table4 to Table6 on 44-42)

M : Applied moment (N-mm)

However, "P<sub>u</sub>" is assumed to be within the basic static load rating (C₀).

### When a Moment Load and a Radial Load are Simultaneously Applied

When a moment and a radial load are applied simultaneously, calculate the service life based on the sum of the radial load and the equivalent radial load.

#### ■f<sub>H</sub>: Hardness Factor

To maximize the load capacity of the Linear Bushing, the hardness of the raceways needs to be between 58 to 64 HRC.

If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor ( $f_{\rm H}$ ).

Normally,  $f_H$  = 1.0 since the Linear Bushing has sufficient hardness.

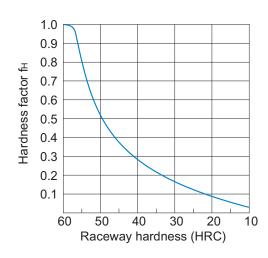



Fig.1 Hardness Factor (f<sub>H</sub>)

### **Point of Selection**

#### Rated Load and Nominal Life

#### ■f<sub>T</sub>:Temperature Factor

If the temperature of the environment surrounding the operating Linear Bushing exceeds 100°C, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.2.

Also note that the Linear Bushing itself must be of high temperature type.

Note) If the environment temperature exceeds 80°C, use a Linear Bushing type equipped with metal retainer plates.

### ■fc: Contact Factor

When multiple nuts are used in close contact with each other, their linear motion is affected by moments and mounting accuracy, making it difficult to achieve uniform load distribution. In such applications, multiply the basic load rating (C) and ( $C_0$ ) by the corresponding contact factor in Table2.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table2.

### 1.0 0.9 0.8 0.7 0.6 0.5 100 150 200 Raceway temperature (°C)

Fig.2 Temperature Factor (f₁)

Table2 Contact Factor (fc)

| Number of nuts in close contact with each other | Contact factor fc |  |  |  |  |  |
|-------------------------------------------------|-------------------|--|--|--|--|--|
| 2                                               | 0.81              |  |  |  |  |  |
| 3                                               | 0.72              |  |  |  |  |  |
| 4                                               | 0.66              |  |  |  |  |  |
| 5                                               | 0.61              |  |  |  |  |  |
| Normal use                                      | 1                 |  |  |  |  |  |

#### ■fw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop motion. Therefore, when loads applied on a Linear Bushing cannot be measured, or when speed and impact have a significant influence, divide the basic load rating (C) or (C<sub>0</sub>) by the corresponding load factor in Table3.

Table3 Load Factor (fw)

| Vibrations/<br>impact | Speed(V)                                                  | f <sub>w</sub> |
|-----------------------|-----------------------------------------------------------|----------------|
| Faint                 | Very low<br>V≦0.25m/s                                     | 1 to 1.2       |
| Weak                  | Slow<br>0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m> | 1.2 to 1.5     |
| Medium                | Medium<br>1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>    | 1.5 to 2       |
| Strong                | High<br>V>2m/s                                            | 2 to 3.5       |

#### [Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

$$L_h = \frac{L \times 10^3}{2 \times \ell_s \times n_1 \times 60}$$

$$\ell_{\rm S}$$
 : Stroke length (m)

n<sub>1</sub>: Number of reciprocations per minute

(min<sup>-1</sup>)

# **Table of Equivalent Factors**

Table4 Equivalent Factors of Model LM

| Madal Na  | Equivaler  | it factor: K  |  |  |  |  |
|-----------|------------|---------------|--|--|--|--|
| Model No. | Single nut | Double blocks |  |  |  |  |
| LM 3      | 1.566      | 0.26          |  |  |  |  |
| LM 4      | 1.566      | 0.21          |  |  |  |  |
| LM 5      | 1.253      | 0.178         |  |  |  |  |
| LM 6      | 0.553      | 0.162         |  |  |  |  |
| LM 8S     | 0.708      | 0.166         |  |  |  |  |
| LM 8      | 0.442      | 0.128         |  |  |  |  |
| LM 10     | 0.389      | 0.101         |  |  |  |  |
| LM 12     | 0.389      | 0.097         |  |  |  |  |
| LM 13     | 0.343      | 0.093         |  |  |  |  |
| LM 16     | 0.279      | 0.084         |  |  |  |  |
| LM 20     | 0.257      | 0.071         |  |  |  |  |
| LM 25     | 0.163      | 0.054         |  |  |  |  |
| LM 30     | 0.153      | 0.049         |  |  |  |  |
| LM 35     | 0.143      | 0.045         |  |  |  |  |
| LM 38     | 0.127      | 0.042         |  |  |  |  |
| LM 40     | 0.117      | 0.04          |  |  |  |  |
| LM 50     | 0.096      | 0.032         |  |  |  |  |
| LM 60     | 0.093      | 0.028         |  |  |  |  |
| LM 80     | 0.077      | 0.022         |  |  |  |  |
| LM 100    | 0.065      | 0.017         |  |  |  |  |
| LM 120    | 0.051      | 0.015         |  |  |  |  |

Note) Equivalent factors for the following models are the same as for model LM: Models LMF, LMK, LMIF, LMIK, LMIH, LMH, and SC.

Table5 Equivalent Factors of Model LM-L

| Model No.    | Equivalent factor: K |  |  |  |  |  |  |
|--------------|----------------------|--|--|--|--|--|--|
| iviouei ivo. | Single nut           |  |  |  |  |  |  |
| LM 3L        | 0.654                |  |  |  |  |  |  |
| LM 4L        | 0.578                |  |  |  |  |  |  |
| LM 5L        | 0.446                |  |  |  |  |  |  |
| LM 6L        | 0.402                |  |  |  |  |  |  |
| LM 8L        | 0.302                |  |  |  |  |  |  |
| LM 10L       | 0.236                |  |  |  |  |  |  |
| LM 12L       | 0.226                |  |  |  |  |  |  |
| LM 13L       | 0.214                |  |  |  |  |  |  |
| LM 16L       | 0.192                |  |  |  |  |  |  |
| LM 20L       | 0.164                |  |  |  |  |  |  |
| LM 25L       | 0.12                 |  |  |  |  |  |  |
| LM 30L       | 0.106                |  |  |  |  |  |  |
| LM 35L       | 0.1                  |  |  |  |  |  |  |
| LM 40L       | 0.086                |  |  |  |  |  |  |
| LM 50L       | 0.068                |  |  |  |  |  |  |
| LM 60L       | 0.062                |  |  |  |  |  |  |

Note) Equivalent factors for the following models are the same as for model LM-L: Models LMF-L, LMK-L, LMH-L, LMIF-L, LMIK-L, LMIH-L, LMCF-L, LMCK-L, and LMCH-L.

Table6 Equivalent Factors of Model LME

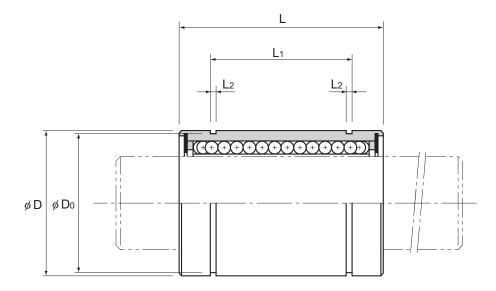
| Model No. | Equivalen  | t factor: K   |  |  |  |
|-----------|------------|---------------|--|--|--|
| Model No. | Single nut | Double blocks |  |  |  |
| LME 5     | 0.669      | 0.123         |  |  |  |
| LME 8     | 0.514      | 0.116         |  |  |  |
| LME 12    | 0.389      | 0.09          |  |  |  |
| LME 16    | 0.343      | 0.081         |  |  |  |
| LME 20    | 0.291      | 0.063         |  |  |  |
| LME 25    | 0.209      | 0.052         |  |  |  |
| LME 30    | 0.167      | 0.045         |  |  |  |
| LME 40    | 0.127      | 0.039         |  |  |  |
| LME 50    | 0.105      | 0.031         |  |  |  |
| LME 60    | 0.093      | 0.024         |  |  |  |
| LME 80    | 0.077      | 0.018         |  |  |  |

# Precautions To Be Taken if an Eccentric Load Is Applied

Since Linear Bushing is not suitable for application of an eccentric load, we recommend using Guide Ball Bushing or Ball Spline.

### **Point of Selection**

**Accuracy Standards** 

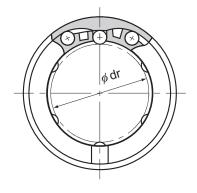

# **Accuracy Standards**

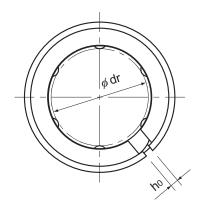
### [Linear Bushing]

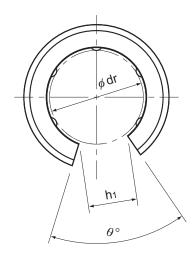
The accuracy of the Linear Bushing in inscribed bore diameter, outer diameter, width and eccentricity is described in the corresponding specification table. The accuracy of mode LM in inscribed bore diameter and eccentricity is classified into high accuracy grade (no symbol) and precision grade (P). (Accuracy symbol is expressed at the end of the model number.)

For the clearance-adjustable type (-AJ) and open type (-OP), the inscribed bore diameter tolerance, the outer diameter tolerance, and the eccentricity indicate the values before the division of the nut.

## **Model LM**





|               | Model No.  |           |      | Main   |             |             |       |                |        |           |  |
|---------------|------------|-----------|------|--------|-------------|-------------|-------|----------------|--------|-----------|--|
|               | Clearance- |           |      | Inscri | bed bore    | diameter    | Outer | diameter       | Le     | ength     |  |
|               | adjustable |           | Ball |        | Toler       | ance        |       | Tolerance      |        |           |  |
| Standard type | type       | Open type | rows | dr     | Precision   | High        | D     | Precision/high | L      | Tolerance |  |
| LM 3          | _          | _         | 4    | 3      | 0           | 0           | 7     | 0              | 10     | 0         |  |
| LM 4          | _          | _         | 4    | 4      | -0.005      | -0.008      | 8     | _0.009         | 12     | _0.12     |  |
| LM 5          | _          | _         | 4    | 5      | 0.003       | -0.000      | 10    | -0.009         | 15     | -0.12     |  |
| LM 6          | LM 6-AJ    | _         | 4    | 6      |             |             | 12    | 0              | 19     |           |  |
| LM 8S         | LM 8S-AJ   | _         | 4    | 8      | ]           |             | 15    | _0.011         | 17     |           |  |
| LM 8          | LM 8-AJ    | _         | 4    | 8      |             | 0           | 15    | -0.011         | 24     |           |  |
| LM 10         | LM 10-AJ   | _         | 4    | 10     | -0.006      | -0.009      | 19    |                | 29     | 0         |  |
| LM 12         | LM 12-AJ   | _         | 4    | 12     | ] =0.000    | -0.009      | 21    | 0              | 30     | -0.2      |  |
| LM 13         | LM 13-AJ   | LM 13-OP  | 4    | 13     |             | ]           |       | 23             | -0.013 | 32        |  |
| LM 16         | LM 16-AJ   | LM 16-OP  | 5    | 16     |             |             | 28    |                | 37     |           |  |
| LM 20         | LM 20-AJ   | LM 20-OP  | 5    | 20     | 0           | 0           | 32    | 0              | 42     |           |  |
| LM 25         | LM 25-AJ   | LM 25-OP  | 6    | 25     | -0.007      | -0.010      | 40    | _0.016         | 59     |           |  |
| LM 30         | LM 30-AJ   | LM 30-OP  | 6    | 30     | -0.007      | -0.010      | 45    | -0.010         | 64     |           |  |
| LM 35         | LM 35-AJ   | LM 35-OP  | 6    | 35     | 0           | 0           | 52    | 0              | 70     | 0         |  |
| LM 40         | LM 40-AJ   | LM 40-OP  | 6    | 40     | _0.008      | -0.012      | 60    | -0.019         | 80     | _0.3      |  |
| LM 50         | LM 50-AJ   | LM 50-OP  | 6    | 50     | _0.000      | -0.012      | 80    | 0              | 100    | ] 0.0     |  |
| LM 60         | LM 60-AJ   | LM 60-OP  | 6    | 60     | 0<br>-0.009 | 0<br>-0.015 | 90    | -0.022         | 110    |           |  |


Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C. If the ambient temperature exceeds 80°C, use the type equipped with a metal retainer (model LM-GA). If requiring a type equipped with a seal, indicate it when placing an order. (Example) LM13 <u>UU</u>

Seal attached on both ends of the nut
For the clearance-adjustable type (-AJ) and open type (-OP), the inscribed bore diameter tolerance, the outer diameter tolerance, and the eccentricity indicate the values before the division of the nut.





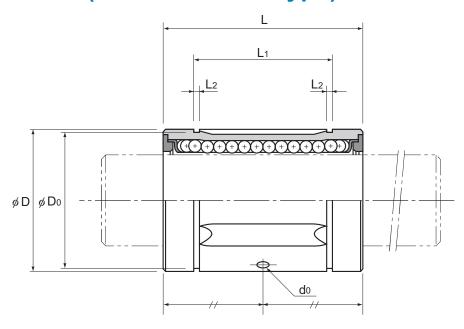




Model LM

Model LM-AJ

Model LM-OP


Unit: mm

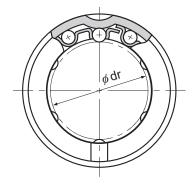
|                |           |                |         |     |    |    | 1         |           |            |          |                | Offic. Hilli |
|----------------|-----------|----------------|---------|-----|----|----|-----------|-----------|------------|----------|----------------|--------------|
|                |           | dir            | nension | S   |    |    | Eccentric | ity (max) | Radial     | Basic lo | ad rating      |              |
|                |           |                |         |     |    |    | μΙ        | m         | clearance  |          |                |              |
| 1              |           |                |         |     |    |    |           |           | tolerance  | С        | C <sub>0</sub> | Mass         |
| L <sub>1</sub> | Tolerance | L <sub>2</sub> | D₀      | h₀  | h₁ | θ° | Precision | High      | μm         | N        | N              | g            |
|                | _         | _              | _       | _   | _  | _  | 4         | 8         | -2         | 88.2     | 108            | 1.4          |
| _              | _         | _              | _       | _   | _  |    | 4         | 8         | -3         | 88.2     | 127            | 1.9          |
| 10.2           |           | 1.1            | 9.6     | _   | _  |    | 4         | 8         | -3         | 167      | 206            | 4            |
| 13.5           |           | 1.1            | 11.5    | 1   | _  | _  | 8         | 12        | <b>-</b> 5 | 206      | 265            | 8            |
| 11.5           |           | 1.1            | 14.3    | 1   | _  | _  | 8         | 12        | <b>-</b> 5 | 176      | 225            | 11           |
| 17.5           | 0         | 1.1            | 14.3    | 1   | _  | _  | 8         | 12        | <b>-</b> 5 | 265      | 402            | 16           |
| 22             | -0.2      | 1.3            | 18      | 1   | _  | _  | 8         | 12        | <b>-</b> 5 | 373      | 549            | 30           |
| 23             | -0.2      | 1.3            | 20      | 1.5 | 8  | 80 | 8         | 12        | <b>-</b> 5 | 412      | 598            | 31.5         |
| 23             |           | 1.3            | 22      | 1.5 | 9  | 80 | 8         | 12        | <b>-</b> 7 | 510      | 775            | 43           |
| 26.5           |           | 1.6            | 27      | 1.5 | 11 | 60 | 8         | 12        | <b>-</b> 7 | 775      | 1180           | 69           |
| 30.5           |           | 1.6            | 30.5    | 1.5 | 11 | 60 | 10        | 15        | -9         | 863      | 1370           | 87           |
| 41             |           | 1.85           | 38      | 2   | 12 | 50 | 10        | 15        | -9         | 980      | 1570           | 220          |
| 44.5           | ]         | 1.85           | 43      | 2.5 | 15 | 50 | 10        | 15        | -9         | 1570     | 2750           | 250          |
| 49.5           | 0         | 2.1            | 49      | 2.5 | 17 | 50 | 12        | 20        | -13        | 1670     | 3140           | 390          |
| 60.5           | _0.3      | 2.1            | 57      | 3   | 20 | 50 | 12        | 20        | -13        | 2160     | 4020           | 585          |
| 74             | ] _0.5    | 2.6            | 76.5    | 3   | 25 | 50 | 12        | 20        | -13        | 3820     | 7940           | 1580         |
| 85             |           | 3.15           | 86.5    | 3   | 30 | 50 | 17        | 25        | -16        | 4710     | 10000          | 2000         |

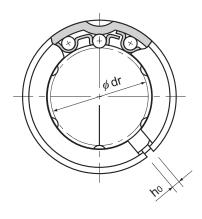
Note) When using the Linear Bushing on a single shaft, use two or more units (instead of one unit) on the same shaft to avoid a moment load, and secure a large distance between the units.

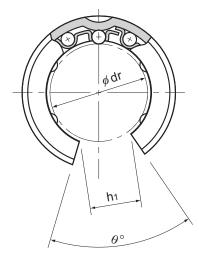
If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

# **Model LM-GA (Metal Retainer Type)**




|               | Model No.   |             |      | Main   |           |          |           |                |     |           |  |
|---------------|-------------|-------------|------|--------|-----------|----------|-----------|----------------|-----|-----------|--|
|               | Clearance-  |             |      | Inscri | bed bore  | diameter | Outer     | diameter       | Le  | ength     |  |
|               | adjustable  |             | Ball |        | Toler     | ance     | Tolerance |                |     |           |  |
| Standard type | type        | Open type   | rows | dr     | Precision | High     | D         | Precision/high | L   | Tolerance |  |
| LM 6GA        | _           | _           | 3    | 6      |           |          | 12        | 0              | 19  |           |  |
| LM 8SGA       | _           | _           | 3    | 8      |           |          | 15        | _0.011         | 17  | ]         |  |
| LM 8GA        | _           | _           | 3    | 8      | 0         | 0        | 15        | -0.011         | 24  |           |  |
| LM 10GA       | _           | _           | 4    | 10     | -0.006    | _0.009   | 19        |                | 29  | 0         |  |
| LM 12GA       | LM 12GA-AJ  | LM 12GA-OP  | 4    | 12     | 0.000     | 0.003    | 21        | 0              | 30  | -0.2      |  |
| LM 13GA       | LM 13GA-AJ  | LM 13GA-OP  | 4    | 13     |           |          | 23        | -0.013         | 32  |           |  |
| LM 16GA       | LM 16GA-AJ  | LM 16GA-OP  | 4    | 16     |           |          | 28        |                | 37  | ]         |  |
| LM 20GA       | LM 20GA-AJ  | LM 20GA-OP  | 5    | 20     | 0         | 0        | 32        |                | 42  |           |  |
| LM 25GA       | LM 25GA-AJ  | LM 25GA-OP  | 5    | 25     | -0.007    | _0.010   | 40        | -0.016         | 59  | _         |  |
| LM 30GA       | LM 30GA-AJ  | LM 30GA-OP  | 6    | 30     | 0.007     | 0.010    | 45        | 0.010          | 64  | _         |  |
| LM 35GA       | LM 35GA-AJ  | LM 35GA-OP  | 6    | 35     |           |          | 52        | 0              | 70  | 0         |  |
| LM 38GA       | LM 38GA-AJ  | LM 38GA-OP  | 6    | 38     | 0         | 0        | 57        | -0.019         | 76  | -0.3      |  |
| LM 40GA       | LM 40GA-AJ  | LM 40GA-OP  | 6    | 40     | -0.008    | -0.012   | 60        | 0.010          | 80  | 0.0       |  |
| LM 50GA       | LM 50GA-AJ  | LM 50GA-OP  | 6    | 50     |           |          | 80        | 0              | 100 |           |  |
| LM 60GA       | LM 60GA-AJ  | LM 60GA-OP  | 6    | 60     | 0         | 0        | 90        | -0.022         | 110 |           |  |
| LM 80GA       | LM 80GA-AJ  | LM 80GA-OP  | 6    | 80     | -0.009    | -0.015   | 120       | 0.022          | 140 | - 0       |  |
| LM 100GA      | LM 100GA-AJ | LM 100GA-OP |      | 100    | 0         | 0        | 150       | 0              | 175 | -0.4      |  |
| LM 120A       | LM 120A-AJ  | LM 120A-OP  | 8    | 120    | -0.010    | -0.020   | 180       | -0.025         | 200 | ] ""      |  |


Note) If requiring a type equipped with a seal, indicate it when placing an order. (seal heat resistance: 80°C.)


(Example) LM50GA UU

Seal attached on both ends of the nut

For the clearance-adjustable type (-AJ) and open type (-OP), the inscribed bore diameter tolerance, the outer diameter tolerance, and the eccentricity indicate the values before the division of the nut.







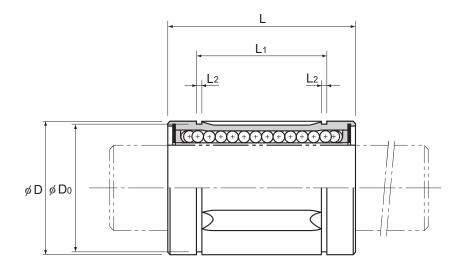
Model LM-GA

Model LM-GA-AJ

Model LM-GA-OP

|                |                  | din   | nension | S   |     |    | Greasing hole | Eccen<br>(ma |      | Radial clearance |       | load<br>ing |       |
|----------------|------------------|-------|---------|-----|-----|----|---------------|--------------|------|------------------|-------|-------------|-------|
|                |                  |       |         |     |     |    |               | μ <b>m</b>   |      | tolerance        |       |             |       |
|                |                  |       |         |     |     |    |               |              |      |                  | С     | C₀          | Mass  |
| L <sub>1</sub> | Tolerance        | $L_2$ | D₀      | h₀  | h₁  | θ° | d₀            | Precision    | High | μm               | Ν     | N           | g     |
| 13.5           |                  | 1.1   | 11.5    | _   | _   | _  | _             | 8            | 12   | <b>–</b> 5       | 206   | 265         | 8     |
| 11.5           |                  | 1.1   | 14.3    | _   | _   |    | _             | 8            | 12   | <b>-</b> 5       | 176   | 225         | 11    |
| 17.5           |                  | 1.1   | 14.3    | _   | _   |    | _             | 8            | 12   | <b>-</b> 5       | 265   | 402         | 16    |
| 22             | 0                | 1.3   | 18      | _   | _   |    | 2             | 8            | 12   | <b>-</b> 5       | 373   | 549         | 30    |
| 23             | -0.2             | 1.3   | 20      | 1.5 | 7.5 | 80 | 2             | 8            | 12   | <b>-</b> 5       | 412   | 598         | 31.5  |
| 23             |                  | 1.3   | 22      | 1.5 | 9   | 80 | 2             | 8            | 12   | <b>-</b> 7       | 510   | 775         | 43    |
| 26.5           |                  | 1.6   | 27      | 1.5 | 11  | 60 | 2.3           | 8            | 12   | <b>-</b> 7       | 775   | 1180        | 69    |
| 30.5           |                  | 1.6   | 30.5    | 2   | 11  | 60 | 2.3           | 10           | 15   | -9               | 863   | 1370        | 87    |
| 41             |                  | 1.85  | 38      | 2   | 13  | 60 | 3             | 10           | 15   | -9               | 980   | 1570        | 220   |
| 44.5           |                  | 1.85  | 43      | 2.5 | 15  | 50 | 3             | 10           | 15   | -9               | 1570  | 2750        | 250   |
| 49.5           |                  | 2.1   | 49      | 2.5 | 17  | 50 | 3             | 12           | 20   | -13              | 1670  | 3140        | 390   |
| 58.5           | 0<br>-0.3        | 2.1   | 54.5    | 3   | 18  | 50 | 3             | 12           | 20   | -13              | 2160  | 4020        | 565   |
| 60.5           | -0.5             | 2.1   | 57      | 3   | 20  | 50 | 3             | 12           | 20   | -13              | 2160  | 4020        | 585   |
| 74             |                  | 2.6   | 76.5    | 3   | 25  | 50 | 4             | 12           | 20   | -13              | 3820  | 7940        | 1580  |
| 85             |                  | 3.15  | 86.5    | 3   | 30  | 50 | 4             | 17           | 25   | -16              | 4710  | 10000       | 2000  |
| 105.5          | 0                | 4.15  | 116     | 3   | 40  | 50 | 4             | 17           | 25   | -16              | 7350  | 16000       | 4520  |
| 125.5          | 0<br>-0.4        | 4.15  | 145     | 3   | 50  | 50 | 4             | 20           | 30   | -20              | 14100 | 34800       | 8600  |
| 158.6          | _U. <del>4</del> | 4.15  | 175     | 4   | 85  | 80 | 5             | 20           | 30   | -25              | 16400 | 40000       | 15000 |

Note) When using the Linear Bushing on a single shaft, use two or more bushings on the same shaft to minimize a moment load, and secure a large distance between the units.


Model LM-GA has oil holes as a standard feature.

If an oil hole is required, this can be indicated by appending "OH" to the end of the model number.

For further information, contact THK.



# **Model LM-MG (Stainless Steel Type)**



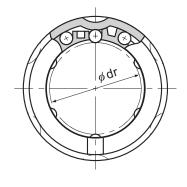
|               | Model No.    |              |      |        | Main      |          |       |                |    |           |  |  |
|---------------|--------------|--------------|------|--------|-----------|----------|-------|----------------|----|-----------|--|--|
|               | Clearance-   |              |      | Inscri | bed bore  | diameter | Outer | diameter       | Le | ength     |  |  |
|               | adjustable   |              | Ball |        | Toler     | ance     |       | Tolerance      |    |           |  |  |
| Standard type | type         | Open type    | rows | dr     | Precision | High     | D     | Precision/high | L  | Tolerance |  |  |
| LM 3M         | _            | _            | 4    | 3      | 0         | 0        | 7     | 0              | 10 | 0         |  |  |
| LM 4M         | _            | _            | 4    | 4      | _0.005    | -0.008   | 8     | _0.009         | 12 | _0.12     |  |  |
| LM 5M         | _            | _            | 4    | 5      | -0.003    | -0.000   | 10    | -0.009         | 15 | -0.12     |  |  |
| * LM 6MG      | LM 6MG-AJ    | _            | 4    | 6      |           |          | 12    | 0              | 19 |           |  |  |
| * LM 8SMG     | LM 8SMG-AJ   | _            | 4    | 8      |           |          | 15    | 0 -0.011       | 17 |           |  |  |
| * LM 8MG      | * LM 8MG-AJ  | _            | 4    | 8      | 0         | 0        | 15    | -0.011         | 24 |           |  |  |
| * LM 10MG     | * LM 10MG-AJ | _            | 4    | 10     | _0.006    | -0.009   | 19    |                | 29 | 0         |  |  |
| * LM 12MG     | * LM 12MG-AJ | _            | 4    | 12     | _0.000    | -0.009   | 21    | 0              | 30 | _0.2      |  |  |
| * LM 13MG     | * LM 13MG-AJ | * LM13MGA-OP | 4    | 13     |           |          | 23    | -0.013         | 32 |           |  |  |
| * LM 16MG     | * LM 16MG-AJ | * LM16MGA-OP | 4    | 16     |           |          | 28    |                | 37 |           |  |  |
| * LM 20MG     | * LM 20MG-AJ | * LM20MGA-OP | 5    | 20     | 0         | 0        | 32    | 0              | 42 |           |  |  |
| * LM 25MG     | * LM 25MG-AJ | * LM25MGA-OP | 5    | 25     | _0.007    | _0.010   | 40    | _0.016         | 59 |           |  |  |
| * LM 30MG     | * LM 30MG-AJ | * LM30MGA-OP | 6    | 30     | -0.007    | -0.010   | 45    | _0.010         | 64 | 0         |  |  |
| * LM 35MG     | * LM 35MG-AJ | * LM35MGA-OP | 6    | 35     | 0         | 0        | 52    | 0              | 70 | _0.3      |  |  |
| * LM 40MG     | * LM 40MG-AJ | * LM40MGA-OP | 6    | 40     | -0.008    | -0.012   | 60    | -0.019         | 80 |           |  |  |

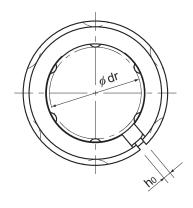
Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

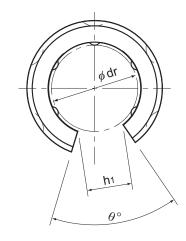
If the ambient temperature exceeds 80°C, use the type equipped with a metal retainer and indicate "A" at the end of the model number.

(For those marked with \* in the table, metal retainers are available. Only metal retainer is available for open type.)

(Metal retainer types of models LM6MG, 8SMG and 8MG each have 3 rows of balls.)


(Example) LM30MG A High temperature symbol


If requiring a type equipped with a seal, indicate it when placing an order. (seal heat resistance: 80°C.)


(Example) LM30MG UU

Seal attached on both ends of the nut

For the clearance-adjustable type (-AJ) and open type (-OP), the inscribed bore diameter tolerance, the outer diameter tolerance, and the eccentricity indicate the values before the division of the nut.

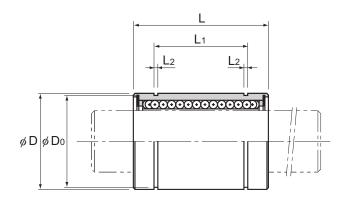






Model LM-MG

Model LM-MG-AJ


Model LM-MG-OP

|                |           | di    | mensior | าร  |    |    | Eccentric | ity (max) | Radial     | Basic loa | ad rating |      |
|----------------|-----------|-------|---------|-----|----|----|-----------|-----------|------------|-----------|-----------|------|
|                |           |       |         |     |    |    | μr        | m         | clearance  |           |           |      |
|                |           |       |         |     |    |    |           |           | tolerance  | С         | C₀        | Mass |
| L <sub>1</sub> | Tolerance | $L_2$ | D₀      | h₀  | h₁ | θ° | Precision | High      | μm         | N         | N         | g    |
| _              | _         | _     |         | —   | _  | _  | 4         | 8         | -2         | 88.2      | 108       | 1.4  |
| _              | _         | _     | _       | _   | _  | _  | 4         | 8         | <b>–</b> 3 | 88.2      | 127       | 1.9  |
| <br>10.2       |           | 1.1   | 9.6     | _   |    | _  | 4         | 8         | -3         | 167       | 206       | 4    |
| 13.5           |           | 1.1   | 11.5    | 1   |    | _  | 8         | 12        | <b>–</b> 5 | 206       | 265       | 8    |
| 11.5           |           | 1.1   | 14.3    | 1   |    | _  | 8         | 12        | <b>–</b> 5 | 176       | 225       | 11   |
| 17.5           | 0         | 1.1   | 14.3    | 1   |    | _  | 8         | 12        | <b>–</b> 5 | 265       | 402       | 16   |
| 22             | _0.2      | 1.3   | 18      | 1   | 1  | _  | 8         | 12        | <b>–</b> 5 | 373       | 549       | 30   |
| 23             | _0.2      | 1.3   | 20      | 1.5 | 1  | _  | 8         | 12        | <b>–</b> 5 | 412       | 598       | 31.5 |
| 23             |           | 1.3   | 22      | 1.5 | 9  | 80 | 8         | 12        | <b>-7</b>  | 510       | 775       | 43   |
| 26.5           |           | 1.6   | 27      | 1.5 | 11 | 80 | 8         | 12        | <b>–</b> 7 | 775       | 1180      | 69   |
| <br>30.5       |           | 1.6   | 30.5    | 1.5 | 11 | 60 | 10        | 15        | <b>-</b> 9 | 863       | 1370      | 87   |
| 41             |           | 1.85  | 38      | 2   | 12 | 50 | 10        | 15        | <b>-</b> 9 | 980       | 1570      | 220  |
| 44.5           | 0         | 1.85  | 43      | 2.5 | 15 | 50 | 10        | 15        | -9         | 1570      | 2750      | 250  |
| 49.5           | -0.3      | 2.1   | 49      | 2.5 | 17 | 50 | 12        | 20        | -13        | 1670      | 3140      | 390  |
| 60.5           |           | 2.1   | 57      | 3   | 20 | 50 | 12        | 20        | -13        | 2160      | 4020      | 585  |

Note) Since the nut and the balls use stainless steel, these models are highly resistant to corrosion and environment. If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

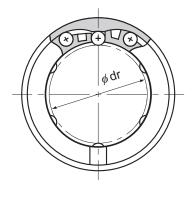
When using the Linear Bushing on a single shaft, use two or more bushings on the same shaft to minimize a moment load, and secure a large distance between the units.

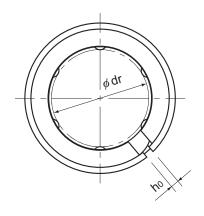
### **Model LME**

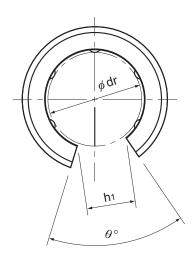


|               | Model No.                |             |              |    | Main                |       |             |     |           |  |  |  |
|---------------|--------------------------|-------------|--------------|----|---------------------|-------|-------------|-----|-----------|--|--|--|
|               | Clearance-<br>adjustable |             |              |    | ibed bore<br>ameter | Outer | diameter    | L   | ength     |  |  |  |
| Standard type | type                     | Open type   | Ball<br>rows | dr | Tolerance           | D     | Tolerance   | L   | Tolerance |  |  |  |
| LME 5         | LME 5-AJ                 | _           | 4            | 5  | +0.008              | 12    | 0           | 22  |           |  |  |  |
| LME 8         | LME 8-AJ                 | _           | 4            | 8  | 0 +0.008            | 16    | -0.008      | 25  | 0         |  |  |  |
| LME 12        | LME 12-AJ                | _           | 4            | 12 | ]                   | 22    | 0           | 32  | _0.2      |  |  |  |
| LME 16        | LME 16-AJ                | LME 16-OP   | 5            | 16 | +0.009              | 26    | -0.009      | 36  | -0.2      |  |  |  |
| LME 20        | LME 20-AJ                | LME 20-OP   | 5            | 20 | -0.001              | 32    |             | 45  |           |  |  |  |
| LME 25        | LME 25-AJ                | LME 25-OP   | 6            | 25 | +0.011              | 40    | 0<br>-0.011 | 58  |           |  |  |  |
| LME 30        | LME 30-AJ                | LME 30-OP   | 6            | 30 | -0.001              | 47    | -0.011      | 68  | 0         |  |  |  |
| LME 40        | LME 40-AJ                | LME 40-OP   | 6            | 40 | 10.012              | 62    | 0           | 80  | -0.3      |  |  |  |
| LME 50        | LME 50-AJ                | LME 50-OP   | 6            | 50 | +0.013              | 75    | -0.013      | 100 |           |  |  |  |
| LME 60        | LME 60-AJ                | LME 60-OP   | 6            | 60 | _0.002              | 90    | 0           | 125 | 0         |  |  |  |
| LME 80GA      | LME 80GA-AJ              | LME 80GA-OP | 6            | 80 | +0.016<br>-0.004    | 120   | -0.015      | 165 | -0.4      |  |  |  |

Note) Since Linear Bushing models LME60 or smaller models are incorporated with a synthetic resin retainer, do not use them at temperature exceeding 80°C.


If the ambient temperature exceeds 80°C, use the type equipped with a metal retainer and indicate "A" at the end of the model number.


(Example) LME20G A High temperature symbol


If requiring a type equipped with a seal, indicate it when placing an order. (seal heat resistance: 80°C.)

(Example) LME16 UU Seal attached on both ends of the nut

For the clearance-adjustable type (-AJ) and open type (-OP), the inscribed bore diameter tolerance, the outer diameter tolerance, and the eccentricity indicate the values before the division of the nut.







Model LME

Model LME-AJ

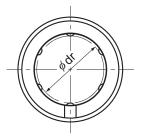
Model LME-OP

Unit: mm

|                |           | dir   | mension | S   |      |    | Eccentricity (max) | Radial clearance | Basic loa | ad rating |      |
|----------------|-----------|-------|---------|-----|------|----|--------------------|------------------|-----------|-----------|------|
|                |           |       |         |     |      |    |                    | tolerance        |           |           |      |
|                |           |       |         |     |      |    |                    |                  | С         | C₀        | Mass |
| L <sub>1</sub> | Tolerance | $L_2$ | D₀      | h₀  | h₁   | θ° | μm                 | μm               | N         | N         | g    |
| 14.5           |           | 1.1   | 11.5    | 1   | _    |    | 12                 | <b>-</b> 5       | 206       | 265       | 11   |
| 16.5           | 0         | 1.1   | 15.2    | 1   | _    | _  | 12                 | <b>-</b> 5       | 265       | 402       | 20   |
| 22.9           | _0.2      | 1.3   | 21      | 1.5 | 7.5  | 78 | 12                 | <b>–</b> 7       | 510       | 775       | 41   |
| 24.9           | -0.2      | 1.3   | 24.9    | 1.5 | 10   | 78 | 12                 | <b>–</b> 7       | 775       | 1180      | 57   |
| <br>31.5       |           | 1.6   | 30.3    | 2   | 10   | 60 | 15                 | <b>-</b> 9       | 863       | 1370      | 91   |
| 44.1           |           | 1.85  | 37.5    | 2   | 12.5 | 60 | 15                 | <b>-</b> 9       | 980       | 1570      | 215  |
| 52.1           | 0         | 1.85  | 44.5    | 2   | 12.5 | 50 | 15                 | <b>-</b> 9       | 1570      | 2750      | 325  |
| 60.6           | -0.3      | 2.15  | 59      | 3   | 16.8 | 50 | 17                 | -13              | 2160      | 4020      | 705  |
| <br>77.6       |           | 2.65  | 72      | 3   | 21   | 50 | 17                 | -13              | 3820      | 7940      | 1130 |
| 101.7          | 0         | 3.15  | 86.5    | 3   | 27.2 | 54 | 20                 | -16              | 4710      | 10000     | 2220 |
| 133.7          | -0.4      | 4.15  | 116     | 3   | 36.3 | 54 | 20                 | -16              | 7350      | 16000     | 5140 |

Note) If a metal retainer is used, the Linear Bushing has the shape as shown below.

When using the Linear Bushing on a single shaft, use two or more units (instead of one unit) on the same shaft to avoid a moment load, and secure a large distance between the units.


If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.



Model LME-GA



# **Model LM-L**



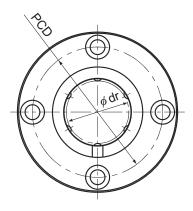
Model LM-L

| Model No.     |      | Main        |              |       |             |     |           |  |  |  |
|---------------|------|-------------|--------------|-------|-------------|-----|-----------|--|--|--|
|               |      | Inscribed b | ore diameter | Outer | diameter    | Le  | ngth      |  |  |  |
|               | Ball |             |              |       |             |     |           |  |  |  |
| Standard type | rows | dr          | Tolerance    | D     | Tolerance   | L   | Tolerance |  |  |  |
| LM 3L         | 4    | 3           |              | 7     |             | 19  |           |  |  |  |
| LM 4L         | 4    | 4           |              | 8     | 0           | 23  |           |  |  |  |
| LM 5L         | 4    | 5           |              | 10    | _0.013      | 29  |           |  |  |  |
| LM 6L         | 4    | 6           | 0            | 12    | _0.013      | 35  |           |  |  |  |
| LM 8L         | 4    | 8           | _0.010       | 15    |             | 45  | 0         |  |  |  |
| LM 10L        | 4    | 10          | _0.010       | 19    |             | 55  | -0.3      |  |  |  |
| LM 12L        | 4    | 12          |              | 21    | 0           | 57  |           |  |  |  |
| LM 13L        | 4    | 13          |              | 23    | -0.016      | 61  |           |  |  |  |
| LM 16L        | 5    | 16          |              | 28    |             | 70  |           |  |  |  |
| LM 20L        | 5    | 20          | 0            | 32    | 0           | 80  |           |  |  |  |
| LM 25L        | 6    | 25          | 0<br>-0.012  | 40    | 0<br>-0.019 | 112 |           |  |  |  |
| LM 30L        | 6    | 30          | -0.012       | 45    | -0.019      | 123 |           |  |  |  |
| LM 35L        | 6    | 35          | 0            | 52    | 0           | 135 | 0         |  |  |  |
| LM 40L        | 6    | 40          | 0<br>-0.015  | 60    | _0.022      | 154 | -0.4      |  |  |  |
| LM 50L        | 6    | 50          | _0.013       | 80    | -0.022      | 192 | J         |  |  |  |
| LM 60L        | 6    | 60          | 0<br>-0.020  | 90    | 0<br>-0.025 | 211 |           |  |  |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LM13L UU
Seal attached on both ends of the nut



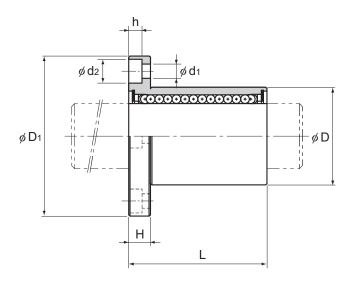



|                | dimen     | sions |      | Eccentricity (max) | clearance      | Basic lo | ad rating |      |
|----------------|-----------|-------|------|--------------------|----------------|----------|-----------|------|
|                |           |       |      |                    | tolerance      |          |           |      |
|                |           |       |      |                    |                | С        | C₀        | Mass |
| L <sub>1</sub> | Tolerance | $L_2$ | D₀   | μm                 | μm             | N        | N         | g    |
| _              |           | _     | _    | 10                 | -2             | 139      | 216       | 3    |
| _              | _         | _     | _    | 10                 | <del>-</del> 3 | 139      | 254       | 4    |
| 20             |           | 1.1   | 9.6  | 10                 | -3             | 263      | 412       | 8    |
| 27             |           | 1.1   | 11.5 | 15                 | <b>-</b> 5     | 324      | 529       | 16   |
| 35             |           | 1.1   | 14.3 | 15                 | <b>-</b> 5     | 431      | 784       | 31   |
| 44             | 0         | 1.3   | 18   | 15                 | <b>-</b> 5     | 588      | 1100      | 62   |
| 46             | -0.3      | 1.3   | 20   | 15                 | <b>-</b> 5     | 657      | 1200      | 80   |
| 46             |           | 1.3   | 22   | 15                 | <b>-</b> 7     | 814      | 1570      | 90   |
| 53             |           | 1.6   | 27   | 15                 | <b>-</b> 7     | 1230     | 2350      | 145  |
| 61             |           | 1.6   | 30.5 | 20                 | <b>-</b> 9     | 1400     | 2750      | 180  |
| 82             |           | 1.85  | 38   | 20                 | <b>-</b> 9     | 1560     | 3140      | 440  |
| 89             |           | 1.85  | 43   | 20                 | <b>-</b> 9     | 2490     | 5490      | 580  |
| 99             | 0         | 2.1   | 49   | 25                 | -13            | 2650     | 6270      | 795  |
| 121            | 0<br>-0.4 | 2.1   | 57   | 25                 | -13            | 3430     | 8040      | 1170 |
| 148            | -0.4      | 2.6   | 76.5 | 25                 | -13            | 6080     | 15900     | 3100 |
| 170            |           | 3.15  | 86.5 | 25                 | -16            | 7650     | 20000     | 3500 |

Note) A stainless steel type is also available. Contact THK for details.

If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

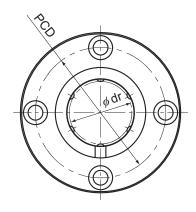
## **Model LMF**




Model LMF

| Model No.     |      |    |                     |      | Main din    | nensions |           |       |            |
|---------------|------|----|---------------------|------|-------------|----------|-----------|-------|------------|
|               |      |    | ibed bore<br>ameter | Oute | r diameter  | L        | ength     | Flang | e diameter |
|               | Ball |    |                     |      |             |          |           |       |            |
| Standard type | rows | dr | Tolerance           | D    | Tolerance   | L        | Tolerance | D₁    | Tolerance  |
| LMF 6         | 4    | 6  |                     | 12   | 0           | 19       |           | 28    |            |
| LMF 8S        | 4    | 8  |                     | 15   | 0<br>-0.011 | 17       |           | 32    |            |
| LMF 8         | 4    | 8  | 0                   | 15   | _0.011      | 24       |           | 32    |            |
| LMF 10        | 4    | 10 | _0.009              | 19   |             | 29       | 0         | 39    |            |
| LMF 12        | 4    | 12 | -0.009              | 21   | 0           | 30       | -0.2      | 42    |            |
| LMF 13        | 4    | 13 |                     | 23   | -0.013      | 32       |           | 43    | 0 -0.2     |
| LMF 16        | 5    | 16 |                     | 28   |             | 37       |           | 48    | -0.2       |
| LMF 20        | 5    | 20 | 0                   | 32   | 0           | 42       |           | 54    |            |
| LMF 25        | 6    | 25 | _0.010              | 40   | -0.016      | 59       |           | 62    |            |
| LMF 30        | 6    | 30 | -0.010              | 45   | -0.010      | 64       |           | 74    |            |
| LMF 35        | 6    | 35 | 0                   | 52   | 0           | 70       | 0         | 82    |            |
| LMF 40        | 6    | 40 | 0<br>-0.012         | 60   | 0<br>-0.019 | 80       | -0.3      | 96    |            |
| LMF 50        | 6    | 50 | -0.012              | 80   | _0.019      | 100      | ] -0.5    | 116   | 0          |
| LMF 60        | 6    | 60 | 0<br>-0.015         | 90   | 0<br>-0.022 | 110      |           | 134   | -0.3       |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.


(Example) LMF25 UU Seal attached on both ends of the nut

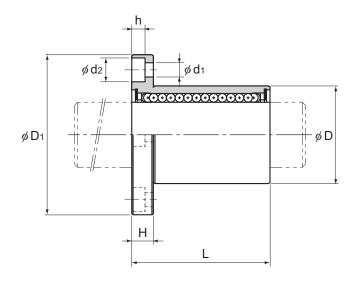


|    |     |                             | Flange perpendicularity | Eccentricity (max) | Radial<br>clearance | Basic loa | ad rating      |      |
|----|-----|-----------------------------|-------------------------|--------------------|---------------------|-----------|----------------|------|
|    |     | Mounting hole               |                         |                    | tolerance           |           |                |      |
|    |     |                             |                         |                    |                     | С         | C <sub>0</sub> | Mass |
| Н  | PCD | $d_1 \times d_2 \times h$   | μm                      | μm                 | μm                  | N         | N              | g    |
| 5  | 20  | $3.4 \times 6.5 \times 3.3$ | 12                      | 12                 | <b>-</b> 5          | 206       | 265            | 26.5 |
| 5  | 24  | $3.4 \times 6.5 \times 3.3$ | 12                      | 12                 | <b>–</b> 5          | 176       | 225            | 34   |
| 5  | 24  | $3.4 \times 6.5 \times 3.3$ | 12                      | 12                 | <b>-</b> 5          | 265       | 402            | 40   |
| 6  | 29  | 4.5×8×4.4                   | 12                      | 12                 | <b>–</b> 5          | 373       | 549            | 78   |
| 6  | 32  | 4.5×8×4.4                   | 12                      | 12                 | <b>–</b> 5          | 412       | 598            | 76   |
| 6  | 33  | 4.5×8×4.4                   | 12                      | 12                 | <b>–</b> 7          | 510       | 775            | 94   |
| 6  | 38  | 4.5×8×4.4                   | 12                      | 12                 | <b>–</b> 7          | 775       | 1180           | 134  |
| 8  | 43  | 5.5×9.2×5.4                 | 15                      | 15                 | <b>-</b> 9          | 863       | 1370           | 180  |
| 8  | 51  | $5.5 \times 9.2 \times 5.4$ | 15                      | 15                 | <b>-</b> 9          | 980       | 1570           | 340  |
| 10 | 60  | $6.6 \times 11 \times 6.5$  | 15                      | 15                 | <b>-</b> 9          | 1570      | 2750           | 460  |
| 10 | 67  | 6.6×11×6.5                  | 20                      | 20                 | -13                 | 1670      | 3140           | 795  |
| 13 | 78  | 9×14×8.6                    | 20                      | 20                 | <b>–13</b>          | 2160      | 4020           | 1054 |
| 13 | 98  | 9×14×8.6                    | 20                      | 20                 | <b>–13</b>          | 3820      | 7940           | 2200 |
| 18 | 112 | 11×17.5×10.8                | 25                      | 25                 | -13                 | 4710      | 10000          | 2960 |

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

# **Model LMF-M (Stainless Steel Type)**

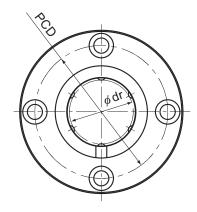



Model LMF-M

| Model No.     |              |    | Main dimensions     |      |            |    |           |       |            |  |  |
|---------------|--------------|----|---------------------|------|------------|----|-----------|-------|------------|--|--|
|               |              |    | ibed bore<br>ameter | Oute | r diameter | L  | ength.    | Flang | e diameter |  |  |
| Standard type | Ball<br>rows | dr | Tolerance           | D    | Tolerance  | L  | Tolerance | D₁    | Tolerance  |  |  |
| LMF 6M        | 4            | 6  |                     | 12   |            | 19 |           | 28    |            |  |  |
| LMF 8SM       | 4            | 8  |                     | 15   | 0          | 17 | 1         | 32    |            |  |  |
| LMF 8M        | 4            | 8  |                     | 15   | -0.011     | 24 | 1         | 32    |            |  |  |
| LMF 10M       | 4            | 10 | 0<br>-0.009         | 19   |            | 29 | 0         | 39    |            |  |  |
| LMF 12M       | 4            | 12 | -0.009              | 21   | 0          | 30 | -0.2      | 42    | 0          |  |  |
| LMF 13M       | 4            | 13 |                     | 23   | -0.013     | 32 |           | 43    | -0.2       |  |  |
| LMF 16M       | 5            | 16 |                     | 28   |            | 37 |           | 48    |            |  |  |
| LMF 20M       | 5            | 20 | 0                   | 32   | 0          | 42 |           | 54    |            |  |  |
| LMF 25M       | 6            | 25 | -0.010              | 40   | -0.016     | 59 | 0         | 62    |            |  |  |
| LMF 30M       | 6            | 30 | _0.010              | 45   | _0.010     | 64 | -0.3      | 74    |            |  |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMF20M UU


Seal attached on both ends of the nut



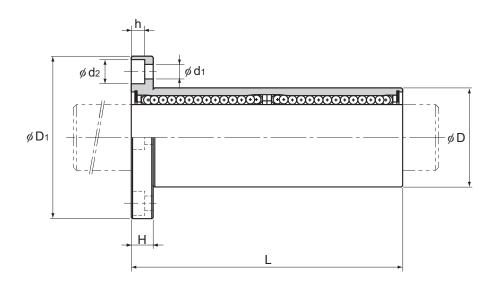
|    |     |                             | Flange perpendicularity | Eccentricity (max) | Radial clearance | Basic loa | ad rating |      |
|----|-----|-----------------------------|-------------------------|--------------------|------------------|-----------|-----------|------|
|    |     | Mounting hole               |                         |                    | tolerance        |           |           |      |
|    |     |                             |                         |                    |                  | С         | C₀        | Mass |
| Н  | PCD | $d_1 \times d_2 \times h$   | μm                      | μm                 | μ <b>m</b>       | N         | N         | g    |
| 5  | 20  | $3.4 \times 6.5 \times 3.3$ | 12                      | 12                 | <b>-</b> 5       | 206       | 265       | 26.5 |
| 5  | 24  | $3.4 \times 6.5 \times 3.3$ | 12                      | 12                 | <b>-</b> 5       | 176       | 225       | 34   |
| 5  | 24  | $3.4 \times 6.5 \times 3.3$ | 12                      | 12                 | <b>-</b> 5       | 265       | 402       | 40   |
| 6  | 29  | 4.5×8×4.4                   | 12                      | 12                 | <b>-</b> 5       | 373       | 549       | 78   |
| 6  | 32  | 4.5×8×4.4                   | 12                      | 12                 | <b>-</b> 5       | 412       | 598       | 76   |
| 6  | 33  | 4.5×8×4.4                   | 12                      | 12                 | <b>-</b> 7       | 510       | 775       | 94   |
| 6  | 38  | 4.5×8×4.4                   | 12                      | 12                 | <b>-</b> 7       | 775       | 1180      | 134  |
| 8  | 43  | 5.5×9.2×5.4                 | 15                      | 15                 | <b>-</b> 9       | 863       | 1370      | 180  |
| 8  | 51  | $5.5 \times 9.2 \times 5.4$ | 15                      | 15                 | <b>-</b> 9       | 980       | 1570      | 340  |
| 10 | 60  | 6.6×11×6.5                  | 15                      | 15                 | <b>-</b> 9       | 1570      | 2750      | 460  |

Note) Since the nut and the balls use stainless steel, these models are highly resistant to corrosion and environment. If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

## **Model LMF-L**



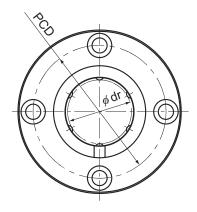
Model LMF-L


| Model No.     |      |    | Main dimensions     |                |             |     |           |                |            |  |  |
|---------------|------|----|---------------------|----------------|-------------|-----|-----------|----------------|------------|--|--|
|               | Ball |    | ibed bore<br>ameter | Outer diameter |             | L   | ength     | Flang          | e diameter |  |  |
| Standard type | rows | dr | Tolerance           | D              | Tolerance   | L   | Tolerance | D <sub>1</sub> | Tolerance  |  |  |
| LMF 6L        | 4    | 6  |                     | 12             | 0           | 35  |           | 28             |            |  |  |
| LMF 8L        | 4    | 8  |                     | 15             | -0.013      | 45  |           | 32             |            |  |  |
| LMF 10L       | 4    | 10 | 0                   | 19             |             | 55  | ]         | 39             |            |  |  |
| LMF 12L       | 4    | 12 | -0.010              | 21             | 0           | 57  | 0<br>-0.3 | 42             |            |  |  |
| LMF 13L       | 4    | 13 |                     | 23             | -0.016      | 61  |           | 43             | 0          |  |  |
| LMF 16L       | 5    | 16 |                     | 28             |             | 70  |           | 48             | -0.2       |  |  |
| LMF 20L       | 5    | 20 | 0                   | 32             | 0           | 80  |           | 54             |            |  |  |
| LMF 25L       | 6    | 25 | 0<br>-0.012         | 40             | 0<br>-0.019 | 112 |           | 62             |            |  |  |
| LMF 30L       | 6    | 30 | -0.012              | 45             | -0.019      | 123 |           | 74             |            |  |  |
| LMF 35L       | 6    | 35 |                     | 52             | 0           | 135 | 0         | 82             |            |  |  |
| LMF 40L       | 6    | 40 | 0 015               | 60             | 0           | 154 | _0.4      | 96             |            |  |  |
| LMF 50L       | 6    | 50 | -0.015              | 80             | -0.022      | 192 | ] _0.4    | 116            | 0          |  |  |
| LMF 60L       | 6    | 60 | 0<br>-0.020         | 90             | 0<br>-0.025 | 211 |           | 134            | -0.3       |  |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMF35L UU

Seal attached on both ends of the nut





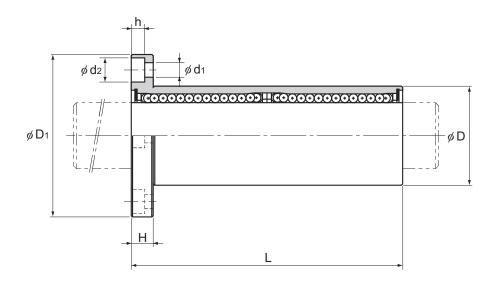

|        |     |                             | Flange           | Eccentricity | Radial     |          |                |      |
|--------|-----|-----------------------------|------------------|--------------|------------|----------|----------------|------|
|        |     |                             | perpendicularity | (max)        | clearance  | Basic lo | ad rating      |      |
|        |     | Mounting hole               |                  | , ,          | tolerance  | С        | C <sub>0</sub> | Mass |
| Н      | PCD | $d_1 \times d_2 \times h$   | μm               | μm           | μm         | N        | N              | g    |
| 5      | 20  | $3.4 \times 6.5 \times 3.3$ | 15               | 15           | <b>-</b> 5 | 324      | 529            | 32   |
| 5      | 24  | $3.4 \times 6.5 \times 3.3$ | 15               | 15           | <b>-</b> 5 | 431      | 784            | 53   |
| 6      | 29  | 4.5×8×4.4                   | 15               | 15           | -5         | 588      | 1100           | 105  |
| 6      | 32  | 4.5×8×4.4                   | 15               | 15           | <b>-</b> 5 | 657      | 1200           | 100  |
| 6      | 33  | 4.5×8×4.4                   | 15               | 15           | <b>–</b> 7 | 814      | 1570           | 130  |
| 6      | 38  | 4.5×8×4.4                   | 15               | 15           | <b>–</b> 7 | 1230     | 2350           | 187  |
| 8      | 43  | 5.5×9.2×5.4                 | 20               | 20           | <b>-</b> 9 | 1400     | 2750           | 260  |
| 8      | 51  | 5.5×9.2×5.4                 | 20               | 20           | <b>-</b> 9 | 1560     | 3140           | 515  |
| 10     | 60  | 6.6×11×6.5                  | 20               | 20           | <b>-</b> 9 | 2490     | 5490           | 655  |
| 10     | 67  | 6.6×11×6.5                  | 25               | 25           | -13        | 2650     | 6270           | 970  |
| 13     | 78  | 9×14×8.6                    | 25               | 25           | -13        | 3430     | 8040           | 1560 |
| 13     | 98  | 9×14×8.6                    | 25               | 25           | -13        | 6080     | 15900          | 3500 |
| <br>18 | 112 | 11×17.5×10.8                | 25               | 25           | -13        | 7650     | 20000          | 4500 |

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

# **Model LMF-ML (Stainless Steel Type)**



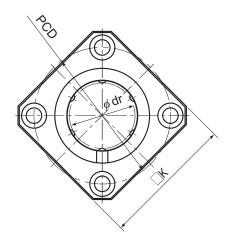
Model LMF-ML


| Model No.     |      |    | Main dimensions     |      |             |     |           |                |            |  |  |  |
|---------------|------|----|---------------------|------|-------------|-----|-----------|----------------|------------|--|--|--|
|               | Ball |    | ibed bore<br>ameter | Oute | r diameter  | L   | ength     | Flang          | e diameter |  |  |  |
| Standard type | rows | dr | Tolerance           | D    | Tolerance   | L   | Tolerance | D <sub>1</sub> | Tolerance  |  |  |  |
| LMF 6ML       | 4    | 6  |                     | 12   | 0           | 35  |           | 28             |            |  |  |  |
| LMF 8ML       | 4    | 8  |                     | 15   | -0.013      | 45  |           | 32             |            |  |  |  |
| LMF 10ML      | 4    | 10 | 0                   | 19   |             | 55  | 0         | 39             |            |  |  |  |
| LMF 12ML      | 4    | 12 | -0.010              | 21   | 0           | 57  | 0<br>-0.3 | 42             | 0          |  |  |  |
| LMF 13ML      | 4    | 13 |                     | 23   | -0.016      | 61  | -0.3      | 43             | _0.2       |  |  |  |
| LMF 16ML      | 5    | 16 |                     | 28   |             | 70  |           | 48             | -0.2       |  |  |  |
| LMF 20ML      | 5    | 20 | 0                   | 32   | 0           | 80  |           | 54             |            |  |  |  |
| LMF 25ML      | 6    | 25 | 0<br>-0.012         | 40   | 0<br>-0.019 | 112 | 0         | 62             |            |  |  |  |
| LMF 30ML      | 6    | 30 | -0.012              | 45   | -0.019      | 123 | -0.4      | 74             |            |  |  |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMF13ML UU

Seal attached on bo


Seal attached on both ends of the nut

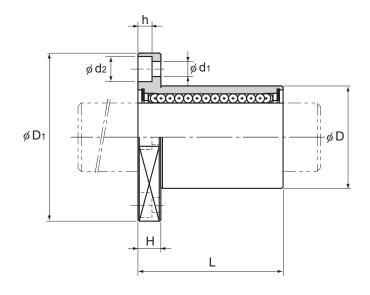


|    |     |                             | Flange perpendicularity | Eccentricity (max) | Radial clearance | Basic loa | ad rating      |      |
|----|-----|-----------------------------|-------------------------|--------------------|------------------|-----------|----------------|------|
|    |     | Mounting hole               |                         |                    | tolerance        | С         | C <sub>0</sub> | Mass |
| Н  | PCD | $d_1 \times d_2 \times h$   | μm                      | μm                 | μm               | N         | N              | g    |
| 5  | 20  | $3.4 \times 6.5 \times 3.3$ | 15                      | 15                 | <b>-</b> 5       | 324       | 529            | 32   |
| 5  | 24  | $3.4 \times 6.5 \times 3.3$ | 15                      | 15                 | <b>-</b> 5       | 431       | 784            | 53   |
| 6  | 29  | 4.5×8×4.4                   | 15                      | 15                 | <b>-</b> 5       | 588       | 1100           | 105  |
| 6  | 32  | 4.5×8×4.4                   | 15                      | 15                 | <b>–</b> 5       | 657       | 1200           | 100  |
| 6  | 33  | 4.5×8×4.4                   | 15                      | 15                 | <b>–</b> 7       | 814       | 1570           | 130  |
| 6  | 38  | 4.5×8×4.4                   | 15                      | 15                 | <b>–</b> 7       | 1230      | 2350           | 187  |
| 8  | 43  | 5.5×9.2×5.4                 | 20                      | 20                 | -9               | 1400      | 2750           | 260  |
| 8  | 51  | 5.5×9.2×5.4                 | 20                      | 20                 | <b>-</b> 9       | 1560      | 3140           | 515  |
| 10 | 60  | 6.6×11×6.5                  | 20                      | 20                 | <b>-</b> 9       | 2490      | 5490           | 655  |

Note) Since the nut and the balls use stainless steel, these models are highly resistant to corrosion and environment. If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

## **Model LMK**

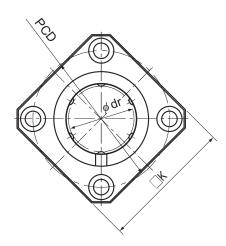



Model LMK

| Model No.     |      |    | Main dimensions     |                |             |     |           |                |            |  |  |  |  |
|---------------|------|----|---------------------|----------------|-------------|-----|-----------|----------------|------------|--|--|--|--|
|               |      |    | ibed bore<br>ameter | Outer diameter |             | L   | ength.    | Flang          | e diameter |  |  |  |  |
|               | Ball |    |                     |                |             |     |           |                |            |  |  |  |  |
| Standard type | rows | dr | Tolerance           | D              | Tolerance   | L   | Tolerance | D <sub>1</sub> | Tolerance  |  |  |  |  |
| LMK 6         | 4    | 6  |                     | 12             | 0           | 19  |           | 28             |            |  |  |  |  |
| LMK 8S        | 4    | 8  |                     | 15             | _0.011      | 17  |           | 32             |            |  |  |  |  |
| LMK 8         | 4    | 8  |                     | 15             | _0.011      | 24  |           | 32             |            |  |  |  |  |
| LMK 10        | 4    | 10 | 0<br>-0.009         | 19             |             | 29  | 0         | 39             |            |  |  |  |  |
| LMK 12        | 4    | 12 | -0.009              | 21             | ] o [       | 30  | -0.2      | 42             |            |  |  |  |  |
| LMK 13        | 4    | 13 |                     | 23             | -0.013      | 32  | ]         | 43             | 0 -0.2     |  |  |  |  |
| LMK 16        | 5    | 16 |                     | 28             | ]           | 37  | 1         | 48             | _0.2       |  |  |  |  |
| LMK 20        | 5    | 20 | 0                   | 32             | _           | 42  | 1         | 54             |            |  |  |  |  |
| LMK 25        | 6    | 25 | 0<br>-0.010         | 40             | 0<br>-0.016 | 59  |           | 62             |            |  |  |  |  |
| LMK 30        | 6    | 30 | -0.010              | 45             | -0.016      | 64  | ]         | 74             |            |  |  |  |  |
| LMK 35        | 6    | 35 | 0                   | 52             |             | 70  | 0         | 82             |            |  |  |  |  |
| LMK 40        | 6    | 40 | 0<br>-0.012         | 60             | 0<br>-0.019 | 80  | _0.3      | 96             |            |  |  |  |  |
| LMK 50        | 6    | 50 | -0.012              | 80             | 0.019       | 100 | ] _0.3    | 116            | 0          |  |  |  |  |
| LMK 60        | 6    | 60 | 0<br>-0.015         | 90             | 0<br>-0.022 | 110 |           | 134            | -0.3       |  |  |  |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMK13 UU


- Seal attached on both ends of the nut

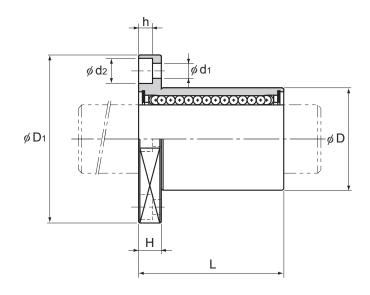


|        |    |     |                             | Flange perpendicularity | Eccentricity (max) | Radial clearance | Basic loa | ad rating      |      |
|--------|----|-----|-----------------------------|-------------------------|--------------------|------------------|-----------|----------------|------|
|        |    |     | Mounting hole               |                         |                    | tolerance        |           |                |      |
|        |    |     |                             |                         |                    |                  | С         | C <sub>0</sub> | Mass |
| K      | Ι  | PCD | $d_1 \times d_2 \times h$   | μm                      | μm                 | μ <b>m</b>       | N         | N              | g    |
| 22     | 5  | 20  | $3.4 \times 6.5 \times 3.3$ | 12                      | 12                 | <b>–</b> 5       | 206       | 265            | 18.5 |
| 25     | 5  | 24  | $3.4 \times 6.5 \times 3.3$ | 12                      | 12                 | <b>-</b> 5       | 176       | 225            | 23   |
| 25     | 5  | 24  | $3.4 \times 6.5 \times 3.3$ | 12                      | 12                 | <b>-</b> 5       | 265       | 402            | 29   |
| 30     | 6  | 29  | $4.5\times8\times4.4$       | 12                      | 12                 | <b>-</b> 5       | 373       | 549            | 61   |
| 32     | 6  | 32  | $4.5\times8\times4.4$       | 12                      | 12                 | <b>-</b> 5       | 412       | 598            | 56   |
| 34     | 6  | 33  | 4.5×8×4.4                   | 12                      | 12                 | <b>–</b> 7       | 510       | 775            | 75   |
| 37     | 6  | 38  | 4.5×8×4.4                   | 12                      | 12                 | <b>–</b> 7       | 775       | 1180           | 104  |
| 42     | 8  | 43  | 5.5×9.2×5.4                 | 15                      | 15                 | -9               | 863       | 1370           | 145  |
| 50     | 8  | 51  | 5.5×9.2×5.4                 | 15                      | 15                 | -9               | 980       | 1570           | 300  |
| 58     | 10 | 60  | $6.6 \times 11 \times 6.5$  | 15                      | 15                 | -9               | 1570      | 2750           | 375  |
| <br>64 | 10 | 67  | 6.6×11×6.5                  | 20                      | 20                 | -13              | 1670      | 3140           | 692  |
| 75     | 13 | 78  | 9×14×8.6                    | 20                      | 20                 | -13              | 2160      | 4020           | 864  |
| 92     | 13 | 98  | 9×14×8.6                    | 20                      | 20                 | -13              | 3820      | 7940           | 2020 |
| 106    | 18 | 112 | 11×17.5×10.8                | 25                      | 25                 | -13              | 4710      | 10000          | 2520 |

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

# **Model LMK-M (Stainless Steel Type)**

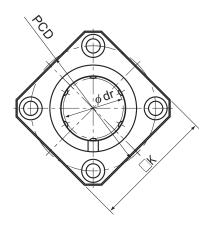



Model LMK-M

| Model No.     |              |    | Main dimensions     |                |             |        |           |       |            |  |  |  |  |
|---------------|--------------|----|---------------------|----------------|-------------|--------|-----------|-------|------------|--|--|--|--|
|               |              |    | ibed bore<br>ameter | Outer diameter |             | Length |           | Flang | e diameter |  |  |  |  |
| Standard type | Ball<br>rows | dr | Tolerance           | D              | Tolerance   | L      | Tolerance | D₁    | Tolerance  |  |  |  |  |
| LMK 6M        | 4            | 6  |                     | 12             | _           | 19     |           | 28    |            |  |  |  |  |
| LMK 8SM       | 4            | 8  |                     | 15             | 0<br>-0.011 | 17     |           | 32    |            |  |  |  |  |
| LMK 8M        | 4            | 8  |                     | 15             | -0.011      | 24     |           | 32    |            |  |  |  |  |
| LMK 10M       | 4            | 10 | 0<br>-0.009         | 19             |             | 29     | 0         | 39    |            |  |  |  |  |
| LMK 12M       | 4            | 12 | -0.009              | 21             | 0           | 30     | -0.2      | 42    | 0          |  |  |  |  |
| LMK 13M       | 4            | 13 |                     | 23             | -0.013      | 32     |           | 43    | -0.2       |  |  |  |  |
| LMK 16M       | 5            | 16 |                     | 28             |             | 37     |           | 48    |            |  |  |  |  |
| LMK 20M       | 5            | 20 | 0                   | 32             | 0           | 42     |           | 54    |            |  |  |  |  |
| LMK 25M       | 6            | 25 | -0.010              | 40             | -0.016      | 59     | 0         | 62    |            |  |  |  |  |
| LMK 30M       | 6            | 30 | _0.010              | 45             | _0.010      | 64     | -0.3      | 74    |            |  |  |  |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMK25M UU


Seal attached on both ends of the nut

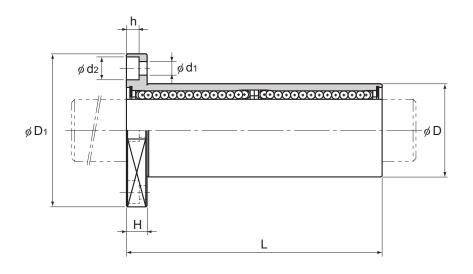


|    |    |     |                             | Flange perpendicularity | Eccentricity (max) | Radial clearance | Basic lo | ad rating |      |
|----|----|-----|-----------------------------|-------------------------|--------------------|------------------|----------|-----------|------|
|    |    |     | Mounting hole               |                         |                    | tolerance        |          |           |      |
|    |    |     |                             |                         |                    |                  | С        | C₀        | Mass |
| K  | Н  | PCD | $d_1 \times d_2 \times h$   | μm                      | μm                 | μ <b>m</b>       | N        | N         | g    |
| 22 | 5  | 20  | $3.4 \times 6.5 \times 3.3$ | 12                      | 12                 | <b>-</b> 5       | 206      | 265       | 18.5 |
| 25 | 5  | 24  | $3.4 \times 6.5 \times 3.3$ | 12                      | 12                 | <b>-</b> 5       | 176      | 225       | 23   |
| 25 | 5  | 24  | 3.4×6.5×3.3                 | 12                      | 12                 | <b>-</b> 5       | 265      | 402       | 29   |
| 30 | 6  | 29  | 4.5×8×4.4                   | 12                      | 12                 | <b>-</b> 5       | 373      | 549       | 61   |
| 32 | 6  | 32  | 4.5×8×4.4                   | 12                      | 12                 | <b>–</b> 5       | 412      | 598       | 56   |
| 34 | 6  | 33  | 4.5×8×4.4                   | 12                      | 12                 | <b>–</b> 7       | 510      | 775       | 75   |
| 37 | 6  | 38  | 4.5×8×4.4                   | 12                      | 12                 | <b>–</b> 7       | 775      | 1180      | 104  |
| 42 | 8  | 43  | 5.5×9.2×5.4                 | 15                      | 15                 | <b>-9</b>        | 863      | 1370      | 145  |
| 50 | 8  | 51  | 5.5×9.2×5.4                 | 15                      | 15                 | <b>-9</b>        | 980      | 1570      | 300  |
| 58 | 10 | 60  | 6.6×11×6.5                  | 15                      | 15                 | <b>-</b> 9       | 1570     | 2750      | 375  |

Note) Since the nut and the balls use stainless steel, these models are highly resistant to corrosion and environment. If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

## **Model LMK-L**



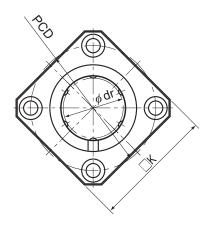

Model LMK-L

| Model No.     |      |    | Main dimensions     |                |             |        |           |                |            |  |  |  |  |
|---------------|------|----|---------------------|----------------|-------------|--------|-----------|----------------|------------|--|--|--|--|
|               | Ball |    | ibed bore<br>ameter | Outer diameter |             | Length |           | Flang          | e diameter |  |  |  |  |
| Standard type | rows | dr | Tolerance           | D              | Tolerance   | L      | Tolerance | D <sub>1</sub> | Tolerance  |  |  |  |  |
| LMK 6L        | 4    | 6  |                     | 12             | 0           | 35     |           | 28             |            |  |  |  |  |
| LMK 8L        | 4    | 8  |                     | 15             | -0.013      | 45     |           | 32             |            |  |  |  |  |
| LMK 10L       | 4    | 10 | 0                   | 19             |             | 55     |           | 39             |            |  |  |  |  |
| LMK 12L       | 4    | 12 | -0.010              | 21             | 0           | 57     | 0<br>-0.3 | 42             |            |  |  |  |  |
| LMK 13L       | 4    | 13 |                     | 23             | -0.016      | 61     | _0.3      | 43             | 0          |  |  |  |  |
| LMK 16L       | 5    | 16 |                     | 28             |             | 70     | ]         | 48             | -0.2       |  |  |  |  |
| LMK 20L       | 5    | 20 | 0                   | 32             | 0           | 80     |           | 54             |            |  |  |  |  |
| LMK 25L       | 6    | 25 | 0<br>-0.012         | 40             | 0<br>-0.019 | 112    |           | 62             |            |  |  |  |  |
| LMK 30L       | 6    | 30 | -0.012              | 45             | -0.019      | 123    | ]         | 74             |            |  |  |  |  |
| LMK 35L       | 6    | 35 | 0                   | 52             | 0           | 135    | 0         | 82             |            |  |  |  |  |
| LMK 40L       | 6    | 40 | 0<br>-0.015         | 60             | 0<br>-0.022 | 154    | 0<br>-0.4 | 96             |            |  |  |  |  |
| LMK 50L       | 6    | 50 | -0.015              | 80             | -0.022      | 192    | ] _0.4    | 116            | 0          |  |  |  |  |
| LMK 60L       | 6    | 60 | 0<br>-0.020         | 90             | 0<br>-0.025 | 211    |           | 134            | -0.3       |  |  |  |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMK50L UU Seal attached on both ends of the nut



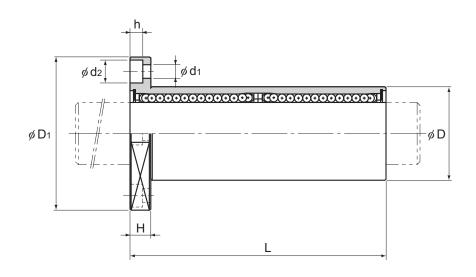



|         |    |     |                             | Flange perpendicularity | Eccentricity (max) | Radial clearance | Basic lo | ad rating      |      |
|---------|----|-----|-----------------------------|-------------------------|--------------------|------------------|----------|----------------|------|
|         |    |     | Mounting hole               |                         |                    | tolerance        | С        | C <sub>0</sub> | Mass |
| K       | Н  | PCD | $d_1 \times d_2 \times h$   | μm                      | μm                 | μm               | N        | N              | g    |
| <br>22  | 5  | 20  | $3.4 \times 6.5 \times 3.3$ | 15                      | 15                 | <b>–</b> 5       | 324      | 529            | 26   |
| 25      | 5  | 24  | $3.4 \times 6.5 \times 3.3$ | 15                      | 15                 | <b>-</b> 5       | 431      | 784            | 46   |
| 30      | 6  | 29  | 4.5×8×4.4                   | 15                      | 15                 | <b>–</b> 5       | 588      | 1100           | 88   |
| 32      | 6  | 32  | 4.5×8×4.4                   | 15                      | 15                 | <b>–</b> 5       | 657      | 1200           | 82   |
| 34      | 6  | 33  | 4.5×8×4.4                   | 15                      | 15                 | <b>–</b> 7       | 814      | 1570           | 108  |
| 37      | 6  | 38  | 4.5×8×4.4                   | 15                      | 15                 | <b>–</b> 7       | 1230     | 2350           | 160  |
| 42      | 8  | 43  | 5.5×9.2×5.4                 | 20                      | 20                 | <b>-</b> 9       | 1400     | 2750           | 230  |
| 50      | 8  | 51  | 5.5×9.2×5.4                 | 20                      | 20                 | <b>-</b> 9       | 1560     | 3140           | 475  |
| 58      | 10 | 60  | 6.6×11×6.5                  | 20                      | 20                 | <b>-</b> 9       | 2490     | 5490           | 575  |
| <br>64  | 10 | 67  | 6.6×11×6.5                  | 25                      | 25                 | -13              | 2650     | 6270           | 870  |
| 75      | 13 | 78  | 9×14×8.6                    | 25                      | 25                 | -13              | 3430     | 8040           | 1380 |
| 92      | 13 | 98  | 9×14×8.6                    | 25                      | 25                 | -13              | 6080     | 15900          | 3300 |
| <br>106 | 18 | 112 | 11×17.5×10.8                | 25                      | 25                 | <b>–13</b>       | 7650     | 20000          | 4060 |

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

یک دو سه صنعت 123sanat.com

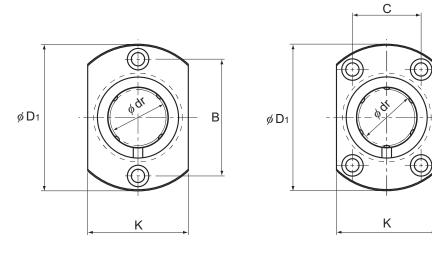
# **Model LMK-ML (Stainless Steel Type)**




Model LMK-ML

| Model No.     |      |    | Main dimensions     |      |             |     |           |                |            |  |  |  |  |  |
|---------------|------|----|---------------------|------|-------------|-----|-----------|----------------|------------|--|--|--|--|--|
|               | Ball |    | ibed bore<br>ameter | Oute | r diameter  | L   | ength     | Flang          | e diameter |  |  |  |  |  |
| Standard type | rows | dr | Tolerance           | D    | Tolerance   | L   | Tolerance | D <sub>1</sub> | Tolerance  |  |  |  |  |  |
| LMK 6ML       | 4    | 6  |                     | 12   | 0           | 35  |           | 28             |            |  |  |  |  |  |
| LMK 8ML       | 4    | 8  |                     | 15   | -0.013      | 45  |           | 32             |            |  |  |  |  |  |
| LMK 10ML      | 4    | 10 | 0                   | 19   |             | 55  |           | 39             |            |  |  |  |  |  |
| LMK 12ML      | 4    | 12 | -0.010              | 21   | 0           | 57  | 0<br>-0.3 | 42             |            |  |  |  |  |  |
| LMK 13ML      | 4    | 13 |                     | 23   | -0.016      | 61  | _0.3      | 43             | 0<br>-0.2  |  |  |  |  |  |
| LMK 16ML      | 5    | 16 |                     | 28   |             | 70  |           | 48             | -0.2       |  |  |  |  |  |
| LMK 20ML      | 5    | 20 | 0                   | 32   | 0           | 80  |           | 54             |            |  |  |  |  |  |
| LMK 25ML      | 6    | 25 | 0<br>-0.012         | 40   | 0<br>-0.019 | 112 | 0         | 62             |            |  |  |  |  |  |
| LMK 30ML      | 6    | 30 | -0.012              | 45   | 1 -0.019    | 123 | -0.4      | 74             |            |  |  |  |  |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.


(Example) LMK8ML UU Seal attached on both ends of the nut

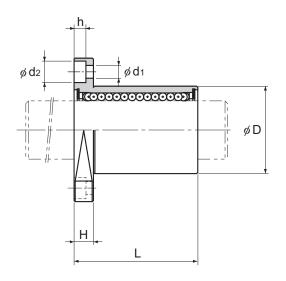


|    |    |     |                             | Flange perpendicularity | Eccentricity (max) | Radial clearance | Basic loa | ad rating      |      |
|----|----|-----|-----------------------------|-------------------------|--------------------|------------------|-----------|----------------|------|
|    |    |     | Mounting hole               |                         |                    | tolerance        | С         | C <sub>0</sub> | Mass |
| K  | Н  | PCD | $d_1 \times d_2 \times h$   | μm                      | μm                 | μm               | N         | N              | g    |
| 22 | 5  | 20  | $3.4 \times 6.5 \times 3.3$ | 15                      | 15                 | <b>-</b> 5       | 324       | 529            | 26   |
| 25 | 5  | 24  | $3.4 \times 6.5 \times 3.3$ | 15                      | 15                 | <b>-</b> 5       | 431       | 784            | 46   |
| 30 | 6  | 29  | $4.5\times8\times4.4$       | 15                      | 15                 | <b>-</b> 5       | 588       | 1100           | 88   |
| 32 | 6  | 32  | 4.5×8×4.4                   | 15                      | 15                 | <b>-</b> 5       | 657       | 1200           | 82   |
| 34 | 6  | 33  | 4.5×8×4.4                   | 15                      | 15                 | <b>-</b> 7       | 814       | 1570           | 108  |
| 37 | 6  | 38  | 4.5×8×4.4                   | 15                      | 15                 | <b>-</b> 7       | 1230      | 2350           | 160  |
| 42 | 8  | 43  | 5.5×9.2×5.4                 | 20                      | 20                 | <b>-9</b>        | 1400      | 2750           | 230  |
| 50 | 8  | 51  | 5.5×9.2×5.4                 | 20                      | 20                 | <b>-</b> 9       | 1560      | 3140           | 475  |
| 58 | 10 | 60  | 6.6×11×6.5                  | 20                      | 20                 | <b>–</b> 9       | 2490      | 5490           | 575  |

Note) Since the nut and the balls use stainless steel, these models are highly resistant to corrosion and environment. If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

## **Model LMH**

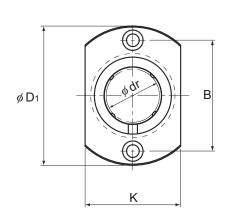


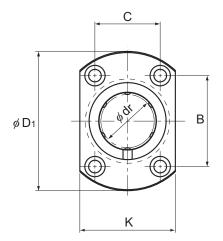

Models LMH6 to 13

Models LMH16 to 30

| Model No.     |      |    | Main dimensions   |       |           |    |           |                |           |  |  |  |  |
|---------------|------|----|-------------------|-------|-----------|----|-----------|----------------|-----------|--|--|--|--|
|               | Ball |    | oed bore<br>meter | Outer | diameter  | Le | ngth      | Flange         | diameter  |  |  |  |  |
| Standard type | rows | dr | Tolerance         | D     | Tolerance | L  | Tolerance | D <sub>1</sub> | Tolerance |  |  |  |  |
| LMH 6         | 4    | 6  |                   | 12    | 0         | 19 |           | 28             |           |  |  |  |  |
| LMH 8         | 4    | 8  |                   | 15    | -0.011    | 24 |           | 32             |           |  |  |  |  |
| LMH 10        | 4    | 10 | 0                 | 19    |           | 29 | 0         | 39             |           |  |  |  |  |
| LMH 12        | 4    | 12 | -0.009            | 21    | 0         | 30 | -0.2      | 42             | 0         |  |  |  |  |
| LMH 13        | 4    | 13 |                   | 23    | -0.013    | 32 | -0.2      | 43             | 0 -0.2    |  |  |  |  |
| LMH 16        | 5    | 16 |                   | 28    | ]         | 37 |           | 48             | 1 -0.2    |  |  |  |  |
| LMH 20        | 5    | 20 | 0                 | 32    |           | 42 |           | 54             |           |  |  |  |  |
| LMH 25        | 6    | 25 | 0<br>-0.010       | 40    | 0 -0.016  | 59 | 0         | 62             |           |  |  |  |  |
| LMH 30        | 6    | 30 | -0.010            | 45    | -0.010    | 64 | -0.3      | 74             |           |  |  |  |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.


(Example) LMH16  $\frac{UU}{}$  Seal attached on both ends of the nut



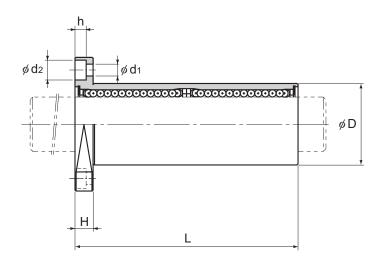

|    |    |    |    |                             | Flange perpendicularity | Eccentricity (max) | Radial clearance | Basic loa | ad rating      |      |  |
|----|----|----|----|-----------------------------|-------------------------|--------------------|------------------|-----------|----------------|------|--|
|    |    |    |    | Mounting hole               |                         |                    | tolerance        | С         | C <sub>0</sub> | Mass |  |
| K  | Н  | В  | С  | $d_1 \times d_2 \times h$   | μm                      | μm                 | μm               | N         | N              | g    |  |
| 18 | 5  | 20 | —  | $3.4 \times 6.5 \times 3.3$ | 12                      | 12                 | <b>–</b> 5       | 206       | 265            | 18   |  |
| 21 | 5  | 24 | —  | $3.4 \times 6.5 \times 3.3$ | 12                      | 12                 | <b>–</b> 5       | 265       | 402            | 28   |  |
| 25 | 6  | 29 | —  | 4.5×8×4.4                   | 12                      | 12                 | <b>–</b> 5       | 373       | 549            | 50   |  |
| 27 | 6  | 32 | —  | 4.5×8×4.4                   | 12                      | 12                 | <b>–</b> 5       | 412       | 598            | 55   |  |
| 29 | 6  | 33 |    | 4.5×8×4.4                   | 12                      | 12                 | <b>-</b> 7       | 510       | 775            | 70   |  |
| 34 | 6  | 31 | 22 | 4.5×8×4.4                   | 12                      | 12                 | <b>-</b> 7       | 775       | 1180           | 95   |  |
| 38 | 8  | 36 | 24 | 5.5×9.2×5.4                 | 15                      | 15                 | -9               | 863       | 1370           | 150  |  |
| 46 | 8  | 40 | 32 | 5.5×9.2×5.4                 | 15                      | 15                 | <b>-</b> 9       | 980       | 1570           | 275  |  |
| 51 | 10 | 49 | 35 | 6.6×11×6.5                  | 15                      | 15                 | <b>-9</b>        | 1570      | 2750           | 350  |  |

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

## **Model LMH-L**

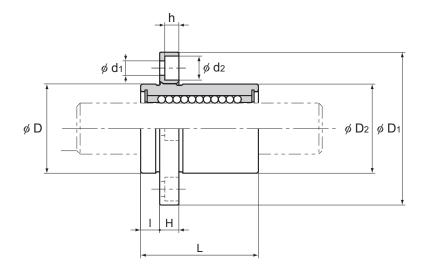





Models LMH6L to 13L

Models LMH16L to 30L

| Model No.     |      |    | Main dimensions  |       |           |     |           |                |           |  |  |  |  |
|---------------|------|----|------------------|-------|-----------|-----|-----------|----------------|-----------|--|--|--|--|
|               | Ball |    | ed bore<br>meter | Outer | diameter  | Le  | ength     | Flange         | diameter  |  |  |  |  |
| Standard type | rows | dr | Tolerance        | D     | Tolerance | L   | Tolerance | D <sub>1</sub> | Tolerance |  |  |  |  |
| LMH 6L        | 4    | 6  |                  | 12    | 0         | 35  |           | 28             |           |  |  |  |  |
| LMH 8L        | 4    | 8  |                  | 15    | -0.013    | 45  |           | 32             |           |  |  |  |  |
| LMH 10L       | 4    | 10 | 0                | 19    |           | 55  | 0         | 39             |           |  |  |  |  |
| LMH 12L       | 4    | 12 | -0.010           | 21    | 0         | 57  | _0.3      | 42             |           |  |  |  |  |
| LMH 13L       | 4    | 13 |                  | 23    | -0.016    | 61  | _0.3      | 43             | 0<br>-0.2 |  |  |  |  |
| LMH 16L       | 5    | 16 |                  | 28    | ]         | 70  | ]         | 48             | -0.2      |  |  |  |  |
| LMH 20L       | 5    | 20 | 0                | 32    | 0         | 80  |           | 54             |           |  |  |  |  |
| LMH 25L       | 6    | 25 | -0.012           | 40    | _0.019    | 112 | 0         | 62             |           |  |  |  |  |
| LMH 30L       | 6    | 30 | -0.012           | 45    | -0.019    | 123 | -0.4      | 74             |           |  |  |  |  |


Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

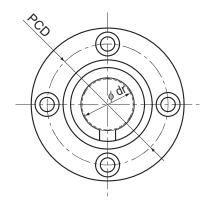
(Example) LMH20L  $\frac{UU}{}$  Seal attached on both ends of the nut



|  |    |    |    |     |                             | Flange perpendicularity | Eccentricity (max) | Radial clearance | Basic loa | ad rating      |      |
|--|----|----|----|-----|-----------------------------|-------------------------|--------------------|------------------|-----------|----------------|------|
|  |    |    |    |     | Mounting hole               |                         |                    | tolerance        | С         | C <sub>0</sub> | Mass |
|  | K  | Н  | В  | С   | $d_1 \times d_2 \times h$   | μm                      | μm                 | μm               | N         | N              | g    |
|  | 18 | 5  | 20 | _   | $3.4 \times 6.5 \times 3.3$ | 15                      | 15                 | <b>-</b> 5       | 324       | 529            | 28   |
|  | 21 | 5  | 24 | _   | $3.4 \times 6.5 \times 3.3$ | 15                      | 15                 | <b>–</b> 5       | 431       | 784            | 40   |
|  | 25 | 6  | 29 | _   | 4.5×8×4.4                   | 15                      | 15                 | <b>-</b> 5       | 588       | 1100           | 75   |
|  | 27 | 6  | 32 | _   | 4.5×8×4.4                   | 15                      | 15                 | <b>–</b> 5       | 657       | 1200           | 82   |
|  | 29 | 6  | 33 | l — | 4.5×8×4.4                   | 15                      | 15                 | <b>-</b> 7       | 814       | 1570           | 107  |
|  | 34 | 6  | 31 | 22  | 4.5×8×4.4                   | 15                      | 15                 | <b>–</b> 7       | 1230      | 2350           | 143  |
|  | 38 | 8  | 36 | 24  | 5.5×9.2×5.4                 | 20                      | 20                 | <b>-</b> 9       | 1400      | 2750           | 225  |
|  | 46 | 8  | 40 | 32  | 5.5×9.2×5.4                 | 20                      | 20                 | <b>-</b> 9       | 1560      | 3140           | 450  |
|  | 51 | 10 | 49 | 35  | 6.6×11×6.5                  | 20                      | 20                 | <b>-</b> 9       | 2490      | 5490           | 575  |

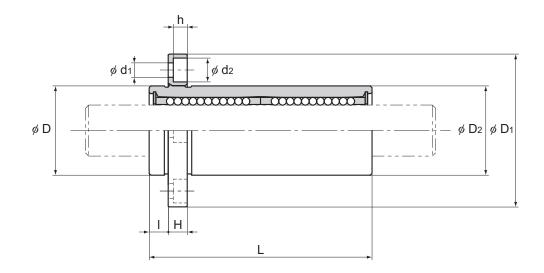
# **Model LMIF**




Model LMIF

| Model No.     |      |    | Main dimensions   |       |             |       |            |                |           |  |  |
|---------------|------|----|-------------------|-------|-------------|-------|------------|----------------|-----------|--|--|
|               | Ball |    | ped bore<br>meter | Outer | diameter    | Overa | all length | Flange         | diameter  |  |  |
| Standard Type | rows | dr | Tolerance         | D     | D Tolerance |       | Tolerance  | D <sub>1</sub> | Tolerance |  |  |
| LMIF 6        |      | 6  |                   | 12    | 0           | 19    |            | 28             |           |  |  |
| LMIF 8        |      | 8  |                   | 15    | -0.011      | 24    | 1          | 32             |           |  |  |
| LMIF 10       | 4    | 10 | 0                 | 19    |             | 29    |            | 39             |           |  |  |
| LMIF 12       |      | 12 | -0.009            | 21    | 0           | 30    | 1 .00      | 42             | 0         |  |  |
| LMIF 13       |      | 13 |                   | 23    | -0.013      | 32    | ±0.3       | 43             | -0.2      |  |  |
| LMIF 16       | 5    | 16 |                   | 28    | ]           | 37    | ]          | 48             |           |  |  |
| LMIF 20       |      | 20 | 0                 | 32    | 0           | 42    | ]          | 54             |           |  |  |
| LMIF 25       | 6    | 25 | -0.010            | 40    | -0.016      | 59    | 1          | 62             |           |  |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

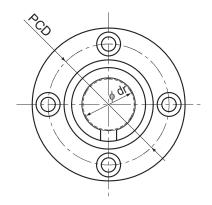

(Example) LMIF16 UU

Seal attached on both ends of the nut



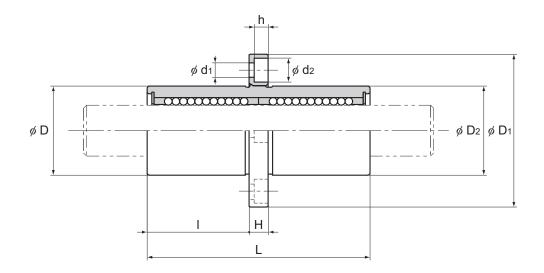
|                  |           |                |   |     |                           |                  |                    |                  |     |              | • • • • • • • • • • • • • • • • • • • • |
|------------------|-----------|----------------|---|-----|---------------------------|------------------|--------------------|------------------|-----|--------------|-----------------------------------------|
|                  |           |                |   |     |                           | Flange           | Eccentricity (max) | Radial clearance |     | Load<br>ting |                                         |
| Length Tolerance |           |                |   |     | Mounting hole             | perpendicularity |                    | tolerance        | С   | C₀           | Mass                                    |
| I                | Tolerance | D <sub>2</sub> | Н | PCD | $d_1 \times d_2 \times h$ | μm               | μm                 | μm               | N   | N            | g                                       |
| 5                |           | 12             | 5 | 20  | 3.4×6×3.3                 | 12               |                    | <b>-</b> 5       | 206 | 265          | 24                                      |
| 5                |           | 15             | 5 | 24  | 3.4 ^ 0 ^ 3.3             | 12               |                    | <b>-</b> 5       | 265 | 402          | 34                                      |
|                  |           | 19             |   | 29  |                           | 12               | 12                 | <b>-</b> 5       | 373 | 549          | 61                                      |
| 6                | ±0.2      | 21             | 6 | 32  | 4.5×7.5×4.4               | 12               | 12                 | <b>-</b> 5       | 412 | 598          | 69                                      |
| 0                | ±0.2      | 23             |   | 33  | 4.5 ^ 7.5 ^ 4.4           | 12               |                    | <b>-</b> 7       | 510 | 775          | 81                                      |
|                  |           | 28             |   | 38  |                           | 12               |                    | <b>–</b> 7       | 775 | 1180         | 125                                     |
| 0                |           | 32             | 0 | 43  | E E V O V E A             | 15               | 15                 | <b>-</b> 9       | 863 | 1370         | 166                                     |
| 8                |           | 40             | 8 | 51  | $5.5 \times 9 \times 5.4$ | 15               | 15                 | <b>-</b> 9       | 980 | 1570         | 305                                     |

# **Model LMIF-L**




Model LMIF-L

| Model No.     |      |    |                   |          |           |       |            |                |           |   |
|---------------|------|----|-------------------|----------|-----------|-------|------------|----------------|-----------|---|
|               | Ball |    | oed bore<br>meter | Outer    | diameter  | Overa | Ill length | Flange         | diameter  |   |
| Standard Type | rows | dr | Tolerance         | D        | Tolerance | L     | Tolerance  | D <sub>1</sub> | Tolerance |   |
| LMIF 6L       |      | 6  |                   | 12       | 0         | 35    |            | 28             |           |   |
| LMIF 8L       |      | 8  |                   | 15       | -0.013    | 45    |            | 32             |           |   |
| LMIF 10L      | 4    | 10 | 0                 | 19       |           | 55    |            | 39             |           |   |
| LMIF 12L      |      | 12 | _0.010            | _0.010 [ | 21        | 0     | 57         | .02            | 42        | 0 |
| LMIF 13L      |      | 13 | ]                 | 23       | -0.016    | 61    | ±0.3       | 43             | -0.2      |   |
| LMIF 16L      | 5    | 16 | ] i               | 28       | ]         | 70    |            | 48             |           |   |
| LMIF 20L      |      | 20 | 0                 | 32       | 0         | 80    |            | 54             |           |   |
| LMIF 25L      | 6    | 25 | -0.012            | 40       | -0.019    | 112   |            | 62             |           |   |

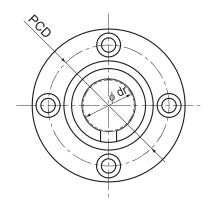

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMIF16L UU Seal attached on both ends of the nut



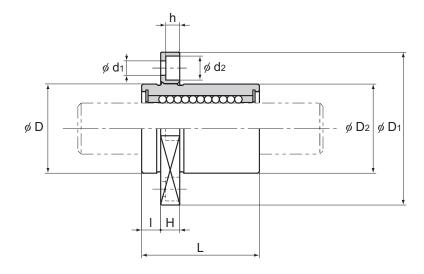
|       |           |                                                        |    |            |                           |                  |                    |                  |      |                | OTTIC: 111111 |
|-------|-----------|--------------------------------------------------------|----|------------|---------------------------|------------------|--------------------|------------------|------|----------------|---------------|
|       |           |                                                        |    |            |                           | Flange           | Eccentricity (max) | Radial clearance |      | Load<br>ting   |               |
| Len   | igth      |                                                        |    |            | Mounting hole             | perpendicularity |                    | tolerance        | С    | C <sub>0</sub> | Mass          |
| I     | Tolerance | D <sub>2</sub>                                         | Н  | PCD        | $d_1 \times d_2 \times h$ | μm               | μm                 | μm               | N    | N              | g             |
| 5     |           | 12                                                     | 5  | 20         | 3.4×6×3.3                 | 12               |                    | <b>-</b> 5       | 324  | 529            | 30            |
| 5     |           | 15                                                     | 3  | 24         | 3.4 ^ 6 ^ 3.3             | 12               |                    | <b>-</b> 5       | 431  | 784            | 46            |
|       |           | 19                                                     |    | 29         |                           | 12               | 12                 | <b>-</b> 5       | 588  | 1100           | 83            |
| 6     | .0.2      | 21                                                     | 6  | 32         | 15 > 75 > 11              | 12               | 12                 | <b>–</b> 5       | 657  | 1200           | 95            |
| 6     | ±0.2      | 23                                                     |    | 6 33       | $-4.5\times7.5\times4.4$  | 12               |                    | <b>–</b> 7       | 814  | 1570           | 117           |
| 28 38 |           | 12                                                     |    | <b>–</b> 7 | 1230                      | 2350             | 196                |                  |      |                |               |
| 0     |           | 32                                                     | 0  | 43         | E E Y O Y E A             | 15               | 15                 | <b>-</b> 9       | 1400 | 2750           | 244           |
| 8     | 8         | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 15 | 15         | <b>-</b> 9                | 1560             | 3140               | 498              |      |                |               |

# **Model LMCF-L**




Model LMCF-L

| Model No.     |      |    | Main dimensions  scribed bore Outer diameter Overall length Flance diameter |       |           |       |            |                |           |  |  |  |
|---------------|------|----|-----------------------------------------------------------------------------|-------|-----------|-------|------------|----------------|-----------|--|--|--|
|               | Ball |    | oed bore<br>meter                                                           | Outer | diameter  | Overa | Ill length | Flange         | diameter  |  |  |  |
| Standard Type | rows | dr | Tolerance                                                                   | D     | Tolerance | L     | Tolerance  | D <sub>1</sub> | Tolerance |  |  |  |
| LMCF 6L       |      | 6  |                                                                             | 12    | 0         | 35    |            | 28             |           |  |  |  |
| LMCF 8L       |      | 8  |                                                                             | 15    | -0.013    | 45    |            | 32             |           |  |  |  |
| LMCF 10L      | 4    | 10 | 0                                                                           | 19    |           | 55    |            | 39             |           |  |  |  |
| LMCF 12L      |      | 12 | -0.010                                                                      | 21    | 0         | 57    | +0.3       | 42             | 0         |  |  |  |
| LMCF 13L      |      | 13 |                                                                             | 23    | -0.016    | 61    | ±0.5       | 43             | -0.2      |  |  |  |
| LMCF 16L      | 5    | 16 |                                                                             | 28    |           | 70    |            | 48             |           |  |  |  |
| LMCF 20L      |      | 20 | 0                                                                           | 32    | 0         | 80    |            | 54             |           |  |  |  |
| LMCF 25L      | 6    | 25 | -0.012                                                                      | 40    | -0.019    | 112   |            | 62             |           |  |  |  |


Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMCF16L UU Seal attached on both ends of the nut



|                                                   |      |    |            |                |                 | Flange           | Eccentricity (max) | Radial clearance |      | Load<br>ting   |      |
|---------------------------------------------------|------|----|------------|----------------|-----------------|------------------|--------------------|------------------|------|----------------|------|
| Len                                               | igth |    |            |                | Mounting hole   | perpendicularity |                    | tolerance        | С    | C <sub>0</sub> | Mass |
| I Tolerance $D_2$ H PCD $d_1 \times d_2 \times h$ |      | μm | μ <b>m</b> | μ <b>m</b>     | Ν               | N                | g                  |                  |      |                |      |
| 15                                                |      | 12 | 5          | 20             | 3.4×6×3.3       | 12               |                    | <b>-</b> 5       | 324  | 529            | 30   |
| 20                                                |      | 15 | 5          | 24             | 3.4 \ 0 \ 3.3   | 12               |                    | <b>-</b> 5       | 431  | 784            | 46   |
| 24.5                                              |      | 19 |            | 29             |                 | 12               | 12                 | <b>-</b> 5       | 588  | 1100           | 83   |
| 25.5                                              | ±0.2 | 21 | 6          | 32             | 4.5×7.5×4.4     | 12               | 12                 | <b>–</b> 5       | 657  | 1200           | 95   |
| 27.5                                              | ±0.2 | 23 | O          | 33             | 4.5 ^ 7.5 ^ 4.4 | 12               |                    | <b>-</b> 7       | 814  | 1570           | 117  |
| 32                                                |      | 28 |            | 38             |                 | 12               |                    | <b>–</b> 7       | 1230 | 2350           | 196  |
| 36                                                |      | 32 | 0          | 43             | E E V O V E A   | 15               | 15                 | -9               | 1400 | 2750           | 244  |
| <br>52                                            |      | 40 | 0          | 8 51 5.5×9×5.4 |                 | 15               | 15                 | -9               | 1560 | 3140           | 498  |

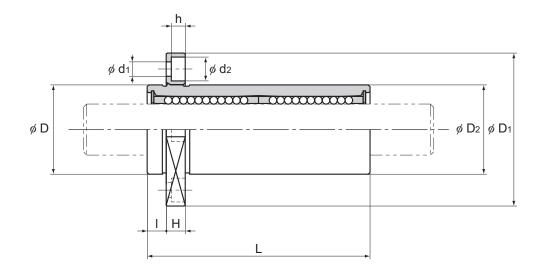
# **Model LMIK**



Model LMIK

|               |      | 1  |                   |       |           |          |           |                |           |
|---------------|------|----|-------------------|-------|-----------|----------|-----------|----------------|-----------|
| Model No.     |      |    |                   |       | Main din  | nensions |           |                |           |
|               | Ball |    | ped bore<br>meter | Outer | diameter  | Overa    | II length | Flange         | diameter  |
| Standard Type | rows | dr | Tolerance         | D     | Tolerance | L        | Tolerance | D <sub>1</sub> | Tolerance |
| LMIK 6        |      | 6  |                   | 12    | 0         | 19       |           | 28             |           |
| LMIK 8        |      | 8  |                   | 15    | -0.011    | 24       |           | 32             |           |
| LMIK 10       | 4    | 10 | 0 19              |       | 29        |          | 39        |                |           |
| LMIK 12       |      | 12 | -0.009            | 21    | 0         | 30       |           | 42             | 0         |
| LMIK 13       |      | 13 |                   | 23    | -0.013    | 32       | ±0.3      | 43             | -0.2      |
| LMIK 16       | 5    | 16 |                   | 28    | ]         | 37       |           | 48             |           |
| LMIK 20       | 5    | 20 | 0                 | 32    | 0         | 42       |           | 54             |           |
| LMIK 25       | 6    | 25 | -0.010            | 40    | -0.016    | 59       |           | 62             |           |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

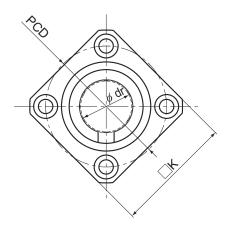

(Example) LMIK16 UU

Seal attached on both ends of the nut



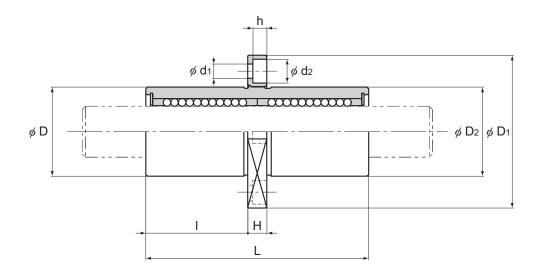
|             |      |       |   |    |     |                           | Flange           | Eccentricity (max) | Radial clearance |     | Load<br>ting |      |
|-------------|------|-------|---|----|-----|---------------------------|------------------|--------------------|------------------|-----|--------------|------|
| Ler         | gth  |       |   |    |     | Mounting hole             | perpendicularity |                    | tolerance        | С   | C₀           | Mass |
| I Tolerance |      | $D_2$ | Ι | K  | PCD | $d_1 \times d_2 \times h$ | μ <b>m</b>       | μ <b>m</b>         | μm               | N   | N            | g    |
| 5           |      | 12    | 5 | 22 | 20  | 3.4×6×3.3                 | 12               |                    | -5               | 206 | 265          | 18   |
| 5           |      | 15    | 5 | 25 | 24  | 3.4 ^ 0 ^ 3.3             | 12               |                    | -5               | 265 | 402          | 27   |
|             |      | 19    |   | 30 | 29  |                           | 12               | 12                 | -5               | 373 | 549          | 46   |
| 6           | ±0.2 | 21    | 6 | 32 | 32  | 4.5×7.5×4.4               | 12               | 12                 | <b>-</b> 5       | 412 | 598          | 52   |
| 0           |      | 23    | O | 34 | 33  | 4.5 ^ 7.5 ^ 4.4           | 12               |                    | <b>-7</b>        | 510 | 775          | 65   |
|             |      | 28    |   | 37 | 38  |                           | 12               |                    | <b>–</b> 7       | 775 | 1180         | 104  |
| 8           |      | 32    | 8 | 42 | 43  | 5.5×9×5.4                 | 15               | 15                 | -9               | 863 | 1370         | 131  |
| 0           |      | 40    | 0 | 50 | 51  | 0.0 ^ 8 ^ 5.4             | 15               | 15                 | <b>-</b> 9       | 980 | 1570         | 267  |

# **Model LMIK-L**




Model LMIK-L

| Mode   | el No.   |      |    | Main dimensions   |        |           |       |            |                |           |    |   |  |
|--------|----------|------|----|-------------------|--------|-----------|-------|------------|----------------|-----------|----|---|--|
|        |          | Ball |    | oed bore<br>meter | Outer  | diameter  | Overa | Ill length | Flange         | diameter  |    |   |  |
| Standa | ard Type | rows | dr | Tolerance         | D      | Tolerance | L     | Tolerance  | D <sub>1</sub> | Tolerance |    |   |  |
| LMIK   | < 6L     |      | 6  |                   | 12     | 0         | 35    |            | 28             | ,         |    |   |  |
| LMIK   | < 8L     |      | 8  |                   | 15     | -0.013    | 45    |            | 32             |           |    |   |  |
| LMIK   | < 10L    | 4    | 10 | 0                 | 19     |           | 55    | ]          | 39             |           |    |   |  |
| LMIK   | < 12L    |      | 12 | -0.010            | -0.010 | -0.010    | 21    | 0          | 57             |           | 42 | 0 |  |
| LMIK   | < 13L    |      | 13 |                   | 23     | -0.016    | 61    | ±0.3       | 43             | -0.2      |    |   |  |
| LMIK   | < 16L    | 5    | 16 | ]                 | 28     | ]         | 70    |            | 48             |           |    |   |  |
| LMIK   | < 20L    |      | 20 | 0                 | 32     | 0         | 80    |            | 54             |           |    |   |  |
| LMIK   | < 25L    | 6    | 25 | -0.012            | 40     | -0.019    | 112   | 1          | 62             |           |    |   |  |

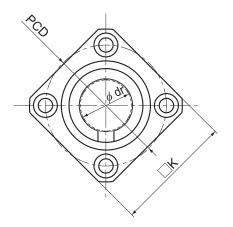

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMIK16L UU Seal attached on both ends of the nut



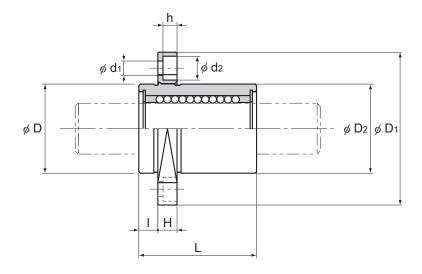
|                                                     |       |      |       |                 |    |               | Flange           | Eccentricity (max) | Radial clearance |      | Load<br>ting   |      |
|-----------------------------------------------------|-------|------|-------|-----------------|----|---------------|------------------|--------------------|------------------|------|----------------|------|
| Len                                                 | igth  |      |       |                 |    | Mounting hole | perpendicularity |                    | tolerance        | С    | C <sub>0</sub> | Mass |
| I Tolerance $D_2$ H K PCD $d_1 \times d_2 \times h$ |       | μm   | μm    | μm              | N  | N             | g                |                    |                  |      |                |      |
| 5                                                   |       | 12   | 5     | 22              | 20 | 3.4×6×3.3     | 12               |                    | <b>-</b> 5       | 324  | 529            | 25   |
| 5                                                   |       | 15   | 5     | 25              | 24 | 3.4 ^ 0 ^ 3.3 | 12               |                    | <b>-</b> 5       | 431  | 784            | 39   |
|                                                     |       | 19   |       | 30              | 29 |               | 12               | 12                 | <b>-</b> 5       | 588  | 1100           | 69   |
| 6                                                   | ±0.2  | 21   | 6     | 32              | 32 | 15~75~11      | 12               | ] 12               | <b>-</b> 5       | 657  | 1200           | 78   |
| O                                                   | ±0.2  | 23 6 | 34    | 33              |    | 12            |                  | <b>–</b> 7         | 814              | 1570 | 101            |      |
|                                                     |       | 28   | 37 38 | <b>⊣</b> ⊢      | 12 |               | <b>–</b> 7       | 1230               | 2350             | 174  |                |      |
| 0                                                   |       | 32   | 8     | 42              | 43 | 55Y0Y51       | 15               | 15                 | <b>-</b> 9       | 1400 | 2750           | 210  |
| 8                                                   | × 1 ⊢ | 40   | 0     | 50 51 5.5×9×5.4 |    | 15            | 15               | <b>-</b> 9         | 1560             | 3140 | 461            |      |

# **Model LMCK-L**




Model LMCK-L

| Model No.     |      |    |                   | Main dimensions |           |       |            |                |           |   |  |
|---------------|------|----|-------------------|-----------------|-----------|-------|------------|----------------|-----------|---|--|
|               | Ball |    | oed bore<br>meter | Outer           | diameter  | Overa | Ill length | Flange         | diameter  |   |  |
| Standard Type | rows | dr | Tolerance         | D               | Tolerance | L     | Tolerance  | D <sub>1</sub> | Tolerance |   |  |
| LMCK 6L       |      | 6  |                   | 12              | 0         | 35    |            | 28             |           |   |  |
| LMCK 8L       |      | 8  |                   | 15              | -0.013    | 45    |            | 32             |           |   |  |
| LMCK 10L      | 4    | 10 | 0 -0.010          | 4 ~ F           | 19        |       | 55         |                | 39        |   |  |
| LMCK 12L      |      | 12 |                   |                 | 21        | 0     | 57         |                | 42        | 0 |  |
| LMCK 13L      | ]    | 13 | ]                 | 23              | -0.016    | 61    | ±0.3       | 43             | -0.2      |   |  |
| LMCK 16L      | 5    | 16 | ]                 | 28              | ]         | 70    |            | 48             |           |   |  |
| LMCK 20L      |      | 20 | 0                 | 32              | 0         | 80    |            | 54             |           |   |  |
| LMCK 25L      | 6    | 25 | -0.012            | 40              | -0.019    | 112   | 1          | 62             |           |   |  |


Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

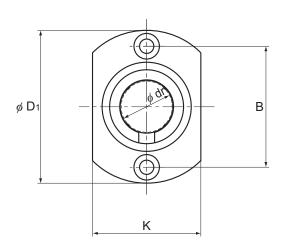
(Example) LMCK16L UU Seal attached on both ends of the nut

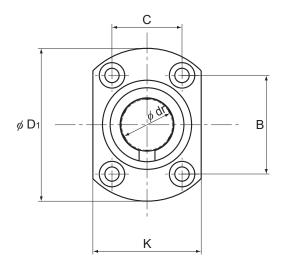


|      |           |       |   |    |     |                           | Flange           | Eccentricity (max) | Radial clearance |      | Load<br>ting   |      |
|------|-----------|-------|---|----|-----|---------------------------|------------------|--------------------|------------------|------|----------------|------|
| Ler  | ngth      |       |   |    |     | Mounting hole             | perpendicularity |                    | tolerance        | С    | C <sub>0</sub> | Mass |
|      | Tolerance | $D_2$ | Н | K  | PCD | $d_1 \times d_2 \times h$ | μ <b>m</b>       | μ <b>m</b>         | μ <b>m</b>       | N    | N              | g    |
| 15   |           | 12    | 5 | 22 | 20  | 3.4×6×3.3                 | 12               |                    | <b>-</b> 5       | 324  | 529            | 25   |
| 20   |           | 15    | 5 | 25 | 24  | 3.4 ^ 0 ^ 3.3             | 12               |                    | <b>-</b> 5       | 431  | 784            | 39   |
| 24.5 | ]         | 19    |   | 30 | 29  |                           | 12               | 12                 | <b>-</b> 5       | 588  | 1100           | 69   |
| 25.5 | ±0.2      | 21    | 6 | 32 | 32  | 4.5×7.5×4.4               | 12               | 12                 | <b>-</b> 5       | 657  | 1200           | 78   |
| 27.5 | ±0.2      | 23    |   | 34 | 33  | 4.5 ^ 7.5 ^ 4.4           | 12               |                    | <b>–</b> 7       | 814  | 1570           | 101  |
| 32   | ]         | 28    |   | 37 | 38  |                           | 12               |                    | <b>–</b> 7       | 1230 | 2350           | 174  |
| 36   |           | 32    | 8 | 42 | 43  | 5.5×9×5.4                 | 15               | 15                 | -9               | 1400 | 2750           | 210  |
| 52   |           | 40    | 0 | 50 | 51  | 5.5 ^ 9 ^ 5.4             | 15               | 15                 | <b>-</b> 9       | 1560 | 3140           | 461  |

# **Model LMIH**




Model LMIH


| Model No.     |      |    |                   |       | Main din  | nensions |            |                |           |
|---------------|------|----|-------------------|-------|-----------|----------|------------|----------------|-----------|
|               | Ball |    | ped bore<br>meter | Outer | diameter  | Overa    | all length | Flange         | diameter  |
| Standard Type | rows | dr | Tolerance         | D     | Tolerance | L        | Tolerance  | D <sub>1</sub> | Tolerance |
| LMIH 6        |      | 6  |                   | 12    | 0         | 19       |            | 28             |           |
| LMIH 8        |      | 8  |                   | 15    | -0.011    | 24       |            | 32             |           |
| LMIH 10       | 4    | 10 | 0                 | 19    |           | 29       |            | 39             |           |
| LMIH 12       |      | 12 | -0.009            | 21    | 0         | 30       | 1 .00      | 42             | 0         |
| LMIH 13       |      | 13 |                   | 23    | -0.013    | 32       | ±0.3       | 43             | -0.2      |
| LMIH 16       | 5    | 16 |                   | 28    | ]         | 37       | ]          | 48             | ]         |
| LMIH 20       | ာ    | 20 | 0                 | 32    | 0         | 42       | ]          | 54             | ]         |
| LMIH 25       | 6    | 25 | -0.010            | 40    | -0.016    | 59       | 1          | 62             | 1         |

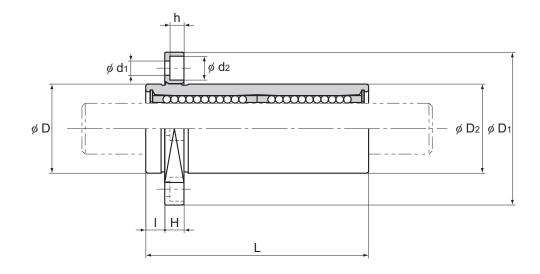
Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMIH16 UU

Seal attached on both ends of the nut





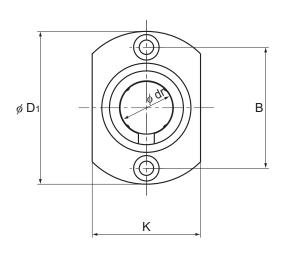

Models LMIH 6 to 13

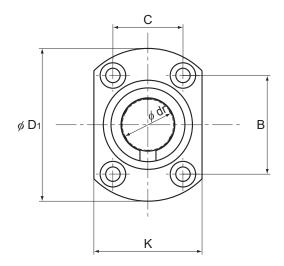
Models LMIH 16 to 25

|     |           |                |     |    |    |          |                           | Flange           | Eccentricity (max) | Radial clearance |     | Load<br>ting   |      |
|-----|-----------|----------------|-----|----|----|----------|---------------------------|------------------|--------------------|------------------|-----|----------------|------|
| Ler | ngth      |                |     |    |    |          | Mounting hole             | perpendicularity |                    | tolerance        | С   | C <sub>0</sub> | Mass |
| I   | Tolerance | D <sub>2</sub> | Н   | K  | В  | С        | $d_1 \times d_2 \times h$ | μ <b>m</b>       | μm                 | μm               | Ν   | N              | g    |
| 5   |           | 12             | 5   | 18 | 20 | _        | 3.4×6×3.3                 | 12               |                    | <b>-</b> 5       | 206 | 265            | 20   |
| )   |           | 15             | ) 3 | 21 | 24 | <b>—</b> | 3.4 ^ 0 ^ 3.3             | 12               |                    | <b>-</b> 5       | 265 | 402            | 29   |
|     | ]         | 19             |     | 25 | 29 | <u> </u> |                           | 12               | 12                 | <b>-</b> 5       | 373 | 549            | 50   |
| 6   | ±0.2      | 21             | 6   | 27 | 32 | <u> </u> | 4.5×7.5×4.4               | 12               | 12                 | <b>-</b> 5       | 412 | 598            | 57   |
| 0   | ±0.2      | 23             | 0   | 29 | 33 | <u> </u> | 4.5 ^ 7.5 ^ 4.4           | 12               |                    | <b>–</b> 7       | 510 | 775            | 70   |
|     |           | 28             |     | 34 | 31 | 22       |                           | 12               |                    | <b>–</b> 7       | 775 | 1180           | 111  |
| 8   | ]         | 32             | 8   | 38 | 36 | 24       | 5.5×9×5.4                 | 15               | 15                 | -9               | 863 | 1370           | 140  |
| 0   |           | 40             | ٥   | 46 | 40 | 32       | 5.5 ^ 9 ^ 5.4             | 15               | 15                 | <b>-</b> 9       | 980 | 1570           | 276  |

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

# **Model LMIH-L**





Model LMIH-L

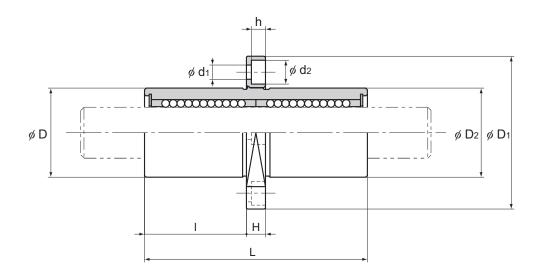
| Model No.     |      |    |                   | Main dimensions |           |       |            |                |           |  |  |  |  |
|---------------|------|----|-------------------|-----------------|-----------|-------|------------|----------------|-----------|--|--|--|--|
|               | Ball |    | ped bore<br>meter | Outer           | diameter  | Overa | Ill length | Flange         | diameter  |  |  |  |  |
| Standard Type | rows | dr | Tolerance         | D               | Tolerance | L     | Tolerance  | D <sub>1</sub> | Tolerance |  |  |  |  |
| LMIH 6L       |      | 6  |                   | 12              | 0         | 35    |            | 28             |           |  |  |  |  |
| LMIH 8L       |      | 8  |                   | 15              | -0.013    | 45    |            | 32             |           |  |  |  |  |
| LMIH 10L      | 4    | 10 | 0                 | 19              |           | 55    |            | 39             |           |  |  |  |  |
| LMIH 12L      |      | 12 | -0.010            | 21              | 0         | 57    | +0.3       | 42             | 0         |  |  |  |  |
| LMIH 13L      |      | 13 |                   | 23              | -0.016    | 61    | ±0.5       | 43             | -0.2      |  |  |  |  |
| LMIH 16L      | 5    | 16 |                   | 28              |           | 70    |            | 48             |           |  |  |  |  |
| LMIH 20L      | 3    | 20 | 0                 | 32              | 0         | 80    |            | 54             |           |  |  |  |  |
| LMIH 25L      | 6    | 25 | -0.012            | 40              | -0.019    | 112   |            | 62             |           |  |  |  |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMIH16L UU Seal attached on both ends of the nut






Models LMIH 6L to 13L

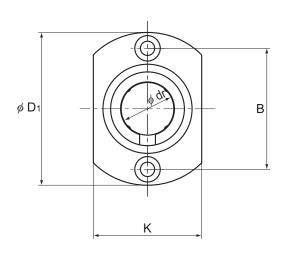
Models LMIH 16L to 25L

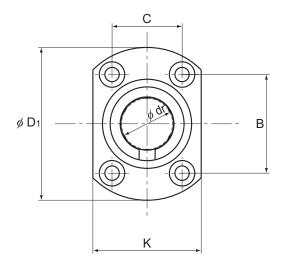
|        |           |                |   |    |    |          |                           | Flange           | Eccentricity (max) | Radial clearance |      | Load<br>ting   |      |
|--------|-----------|----------------|---|----|----|----------|---------------------------|------------------|--------------------|------------------|------|----------------|------|
| Length |           |                |   |    |    |          | Mounting hole             | perpendicularity |                    | tolerance        | O    | C <sub>0</sub> | Mass |
| I      | Tolerance | D <sub>2</sub> | Н | K  | В  | С        | $d_1 \times d_2 \times h$ | μm               | μm                 | μm               | Ν    | Ν              | g    |
| 5      |           | 12             | 5 | 18 | 20 | _        | 3.4×6×3.3                 | 12               |                    | <b>-</b> 5       | 324  | 529            | 26   |
| 5      |           | 15             | 5 | 21 | 24 | _        | 3.4 ^ 0 ^ 3.3             | 12               |                    | <b>-</b> 5       | 431  | 784            | 41   |
|        | ]         | 19             |   | 25 | 29 | <u> </u> |                           | 12               | 12                 | <b>-</b> 5       | 588  | 1100           | 73   |
| 6      | ±0.2      | 21             | 6 | 27 | 32 | _        | 4.5×7.5×4.4               | 12               | 12                 | <b>-</b> 5       | 657  | 1200           | 83   |
| 0      | ±0.2      | 23             | 0 | 29 | 33 | _        | 4.5 ^ 7.5 ^ 4.4           | 12               |                    | <b>–</b> 7       | 814  | 1570           | 106  |
|        |           | 28             |   | 34 | 31 | 22       |                           | 12               |                    | <b>–</b> 7       | 1230 | 2350           | 180  |
| 8      | ]         | 32             | 8 | 38 | 36 | 24       | 5.5×9×5.4                 | 15               | 15                 | -9               | 1400 | 2750           | 219  |
| <br>0  |           | 40             | 0 | 46 | 40 | 32       | 5.5 ^ 9 ^ 5.4             | 15               | 15                 | <b>-</b> 9       | 1560 | 3140           | 470  |

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

### **Model LMCH-L**




Model LMCH-L


| Model No.     |      |    |                         |    | Main din  | nensions |            |                |           |
|---------------|------|----|-------------------------|----|-----------|----------|------------|----------------|-----------|
|               | Ball |    | Inscribed bore diameter |    | diameter  | Overa    | Ill length | Flange         | diameter  |
| Standard Type | rows | dr | Tolerance               | D  | Tolerance | L        | Tolerance  | D <sub>1</sub> | Tolerance |
| LMCH 6L       |      | 6  |                         | 12 | 0         | 35       |            | 28             |           |
| LMCH 8L       |      | 8  |                         | 15 | -0.013    | 45       |            | 32             |           |
| LMCH 10L      | 4    | 10 | 0                       | 19 |           | 55       |            | 39             |           |
| LMCH 12L      |      | 12 | -0.010                  | 21 | 0         | 57       | +0.3       | 42             | 0         |
| LMCH 13L      |      | 13 |                         | 23 | -0.016    | 61       | ±0.5       | 43             | -0.2      |
| LMCH 16L      | 5    | 16 |                         | 28 | ]         | 70       |            | 48             |           |
| LMCH 20L      | 3    | 20 | 0                       | 32 | 0         | 80       |            | 54             |           |
| LMCH 25L      | 6    | 25 | -0.012                  | 40 | -0.019    | 112      |            | 62             |           |

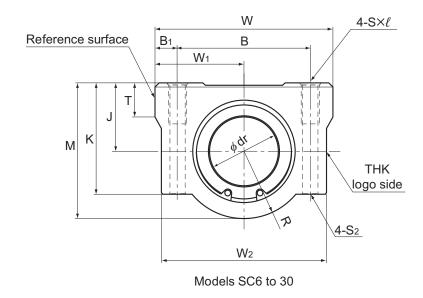
Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding  $80^{\circ}$ C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMCH16L UU

Seal attached on both ends of the nut






Models LMCH 6L to 13L

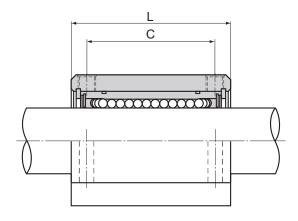
Models LMCH 16L to 25L

|        |           |                |   |    |    |          |                           | Flange           | Eccentricity (max) | Radial clearance |      | Load<br>ting   |      |
|--------|-----------|----------------|---|----|----|----------|---------------------------|------------------|--------------------|------------------|------|----------------|------|
| Length |           |                |   |    |    |          | Mounting hole             | perpendicularity |                    | tolerance        | С    | C <sub>0</sub> | Mass |
| I      | Tolerance | D <sub>2</sub> | Н | K  | В  | С        | $d_1 \times d_2 \times h$ | μm               | μm                 | μm               | N    | Ν              | g    |
| 15     |           | 12             | 5 | 18 | 20 | _        | 3.4×6×3.3                 | 12               |                    | <b>-</b> 5       | 324  | 529            | 26   |
| 20     |           | 15             | 5 | 21 | 24 | _        | 3.4 ^ 0 ^ 3.3             | 12               |                    | <b>-</b> 5       | 431  | 784            | 41   |
| 24.5   |           | 19             |   | 25 | 29 | <u> </u> |                           | 12               | 12                 | <b>-</b> 5       | 588  | 1100           | 73   |
| 25.5   | ±0.2      | 21             | 6 | 27 | 32 | _        | 4.5×7.5×4.4               | 12               | 12                 | <b>-</b> 5       | 657  | 1200           | 83   |
| 27.5   | ±0.2      | 23             | 0 | 29 | 33 | _        | 4.5 ^ 7.5 ^ 4.4           | 12               |                    | <b>–</b> 7       | 814  | 1570           | 106  |
| 32     |           | 28             |   | 34 | 31 | 22       |                           | 12               |                    | <b>–</b> 7       | 1230 | 2350           | 180  |
| 36     |           | 32             | 8 | 38 | 36 | 24       | 5.5×9×5.4                 | 15               | 15                 | -9               | 1400 | 2750           | 219  |
| 52     |           | 40             | 0 | 46 | 40 | 32       | 5.5 ^ 9 ^ 5.4             | 15               | 15                 | <b>-</b> 9       | 1560 | 3140           | 470  |

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

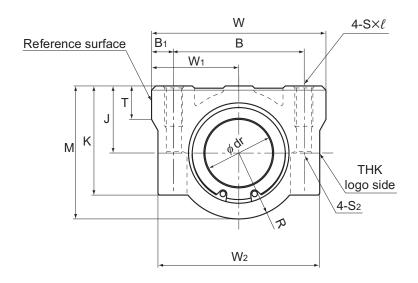
### Models SC6 to 30




|           | Oute   | er dimens | sions  |        |           |          |       | LM c                    | asing dim        | nensiones   |
|-----------|--------|-----------|--------|--------|-----------|----------|-------|-------------------------|------------------|-------------|
| Model No. | Height | Width     | Length | Mounti | ng hole p | oosition | Тар   | Through bolt            | Center<br>height |             |
|           | М      | W         | L      | В      | B₁        | С        | S×ℓ   | model No,S <sub>2</sub> | J<br>±0.02       | W₁<br>±0.02 |
| SC 6UU    | 18     | 30        | 25     | 20     | 5         | 15       | M4×8  | M3                      | 9                | 15          |
| SC 8UU    | 22     | 34        | 30     | 24     | 5         | 18       | M4×8  | M3                      | 11               | 17          |
| SC 10UU   | 26     | 40        | 35     | 28     | 6         | 21       | M5×12 | M4                      | 13               | 20          |
| SC 12UU   | 29     | 42        | 36     | 30.5   | 5.75      | 26       | M5×12 | M4                      | 15               | 21          |
| SC 13UU   | 30     | 44        | 39     | 33     | 5.5       | 26       | M5×12 | M4                      | 15               | 22          |
| SC 16UU   | 38.5   | 50        | 44     | 36     | 7         | 34       | M5×12 | M4                      | 19               | 25          |
| SC 20UU   | 42     | 54        | 50     | 40     | 7         | 40       | M6×12 | M5                      | 21               | 27          |
| SC 25UU   | 51.5   | 76        | 67     | 54     | 11        | 50       | M8×18 | M6                      | 26               | 38          |
| SC 30UU   | 59.5   | 78        | 72     | 58     | 10        | 58       | M8×18 | M6                      | 30               | 39          |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

A stainless steel Linear Bushing model LM-MG, which is highly corrosion resistant, can also be incorporated at your request.


Example of Model Number for Use in Combination with Linear Bushing Units

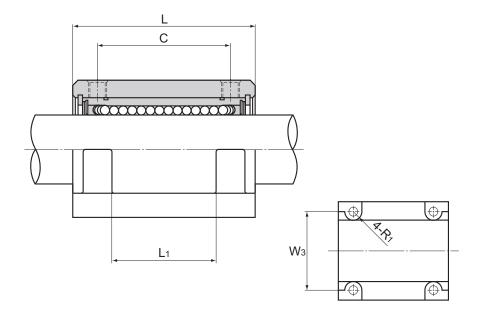
| Linear Bushing to be combined                           | Examle of model No. |                   |
|---------------------------------------------------------|---------------------|-------------------|
| Both end attached with seal                             | SC 13UU             | Standard<br>stock |
| Without seal                                            | SC 13               | Build to order    |
| Made of stainless steel;<br>both end attached with seal | SC 13MUU            | Build to order    |



|    |                |    |      |    |                      | Model No. of<br>Linear Bushing<br>to be combined | Basic loa | ad rating | Unit |
|----|----------------|----|------|----|----------------------|--------------------------------------------------|-----------|-----------|------|
|    |                |    |      |    | ribed bore<br>ameter |                                                  | С         | C₀        | Mass |
| K  | W <sub>2</sub> | Т  | R    | dr | Tolerance            |                                                  | N         | N         | g    |
| 15 | 28             | 6  | 9    | 6  |                      | LM6UU                                            | 206       | 265       | 34   |
| 18 | 32             | 6  | 11   | 8  | ] [                  | LM8UU                                            | 265       | 402       | 52   |
| 22 | 37             | 8  | 13   | 10 | 0                    | LM10UU                                           | 373       | 549       | 92   |
| 25 | 39             | 8  | 14   | 12 | -0.009               | LM12UU                                           | 412       | 598       | 102  |
| 26 | 41             | 8  | 15   | 13 | ] [                  | LM13UU                                           | 510       | 775       | 123  |
| 35 | 46             | 9  | 19.5 | 16 |                      | LM16UU                                           | 775       | 1180      | 189  |
| 36 | 52             | 11 | 21   | 20 | 0                    | LM20UU                                           | 863       | 1370      | 237  |
| 41 | 68             | 12 | 25.5 | 25 | _0.010               | LM25UU                                           | 980       | 1570      | 555  |
| 49 | 72             | 15 | 29.5 | 30 | -0.010               | LM30UU                                           | 1570      | 2750      | 685  |

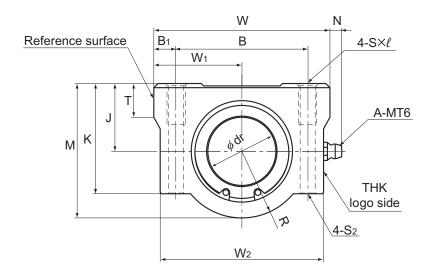
### Models SC35 to 50




Models SC35 to 50

|           | Oute   | r dimen | sions  |     |                      |    |        |                         | LM casir      | ng dimens   | siones |  |
|-----------|--------|---------|--------|-----|----------------------|----|--------|-------------------------|---------------|-------------|--------|--|
| Model No. | Height | Width   | Length |     | unting h<br>position |    | Тар    | Through bolt            | Center height |             |        |  |
|           | М      | W       | L      | В   | B₁                   | С  | s×ℓ    | model No,S <sub>2</sub> | J<br>±0.02    | W₁<br>±0.02 | К      |  |
| SC 35UU   | 68     | 90      | 80     | 70  | 10                   | 60 | M8×18  | M6                      | 34            | 45          | 54     |  |
| SC 40UU   | 78     | 102     | 90     | 80  | 11                   | 60 | M10×25 | M8                      | 40            | 51          | 62     |  |
| SC 50UU   | 102    | 122     | 110    | 100 | 11                   | 80 | M10×25 | M8                      | 52            | 61          | 80     |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.
A stainless steel Linear Bushing model LM-MG, which is highly corrosion resistant, can also be incorporated at your request.
(Model SC50 does not include a stainless type.)


Example of Model Number for Use in Combination with Linear Bushing Units

| Linear Bushing to be combined                        | Examle of model No. |                   |
|------------------------------------------------------|---------------------|-------------------|
| Both end attached with seal                          | SC 40UU             | Standard<br>stock |
| Without seal                                         | SC 40               | Build to order    |
| Made of stainless steel; both end attached with seal | SC 40MUU            | Build to order    |

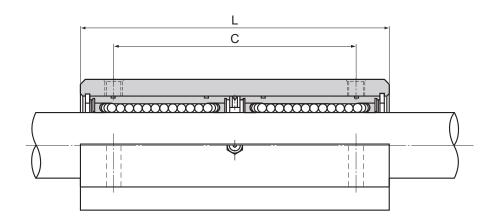


|                |                |                |    |    | Model No. of<br>Linear Bushing<br>to be combined | Basic<br>rat | load<br>ing         | Unit   |      |      |      |
|----------------|----------------|----------------|----|----|--------------------------------------------------|--------------|---------------------|--------|------|------|------|
|                |                |                |    |    |                                                  |              | ibed bore<br>ameter |        | С    | C₀   | Mass |
| W <sub>2</sub> | W <sub>3</sub> | L <sub>1</sub> | Т  | R  | R₁                                               | dr Tolerance |                     |        | N    | N    | g    |
| 85             | 60             | 42             | 18 | 34 | 5                                                | 35           | 0                   | LM35UU | 1670 | 3140 | 1100 |
| 96             | 80             | 44             | 20 | 38 | 8                                                | 40 0 -0.012  |                     | LM40UU | 2160 | 4020 | 1600 |
| 116            | 100            | 64             | 25 | 50 | 8                                                | 50           | -0.012              | LM50UU | 3820 | 7940 | 3350 |

### **Model SL**

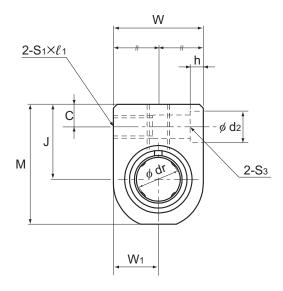


Model SL


|           | Oute   | r dimens | sions  |           | LM casing dimensiones |          |       |                         |                  |             |  |  |
|-----------|--------|----------|--------|-----------|-----------------------|----------|-------|-------------------------|------------------|-------------|--|--|
| Model No. | Height | Width    | Length | Mounti    | ng hole p             | oosition | Тар   | Through bolt            | Center<br>height |             |  |  |
|           | М      | W        | L      | В         | B₁                    | С        | S×ℓ   | model No,S <sub>2</sub> | J<br>±0.02       | W₁<br>±0.02 |  |  |
| SL 6UU    | 18     | 30       | 48     | 20        | 5                     | 36       | M4×8  | M3                      | 9                | 15          |  |  |
| SL 8UU    | 22     | 34       | 58     | 24        | 5                     | 42       | M4×8  | M3                      | 11               | 17          |  |  |
| SL 10UU   | 26     | 40       | 68     | 28        | 6                     | 46       | M5×12 | M4                      | 13               | 20          |  |  |
| SL 12UU   | 29     | 42       | 70     | 30.5      | 5.75                  | 50       | M5×12 | M4                      | 15               | 21          |  |  |
| SL 13UU   | 30     | 44       | 75     | 33        | 5.5                   | 50       | M5×12 | M4                      | 15               | 22          |  |  |
| SL 16UU   | 38.5   | 50       | 85     | 36        | 7                     | 60       | M5×12 | M4                      | 19               | 25          |  |  |
| SL 20UU   | 42     | 54       | 96     | 40 7 70   |                       |          | M6×12 | M5                      | 21               | 27          |  |  |
| SL 25UU   | 51.5   | 76       | 130    | 54 11 100 |                       |          | M8×18 | M6                      | 26               | 38          |  |  |
| SL 30UU   | 59.5   | 78       | 140    | 58        | 10                    | 110      | M8×18 | M6                      | 30               | 39          |  |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

A stainless steel Linear Bushing model LM-MG, which is highly corrosion resistant, can also be incorporated at your request.


Example of Model Number for Use in Combination with Linear Bushing Units

| Linear Bushing<br>to be combined                        | Examle of model No. |                   |
|---------------------------------------------------------|---------------------|-------------------|
| Both end attached with seal                             | SL 13UU             | Standard<br>stock |
| Without seal                                            | SL 13               | Build to order    |
| Made of stainless steel;<br>both end attached with seal | SL 13MUU            | Build to order    |

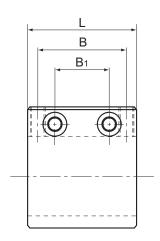


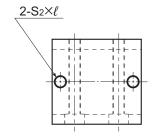
|    |       |    |      |     |             |                    | Model No. of<br>Linear Bushing<br>to be combined | Basic loa | ad rating | Unit |
|----|-------|----|------|-----|-------------|--------------------|--------------------------------------------------|-----------|-----------|------|
|    |       |    |      |     |             | bed bore<br>ameter |                                                  | С         | C₀        | Mass |
| K  | $W_2$ | Т  | R    | N   | dr          | Tolerance          |                                                  | N         | N         | g    |
| 15 | 28    | 6  | 9    | 7   | 6           |                    | LM6U                                             | 324       | 529       | 68   |
| 18 | 32    | 6  | 11   | 7   | 8           |                    | LM8U                                             | 431       | 784       | 105  |
| 22 | 37    | 8  | 13   | 7   | 10          | 0                  | LM10U                                            | 588       | 1100      | 185  |
| 25 | 39    | 8  | 14   | 6.5 | 12          | -0.009             | LM12U                                            | 657       | 1200      | 205  |
| 26 | 41    | 8  | 15   | 6.5 | 13          |                    | LM13U                                            | 814       | 1570      | 242  |
| 35 | 46    | 9  | 19.5 | 6   | 16          |                    | LM16U                                            | 1230      | 2350      | 403  |
| 36 | 52    | 11 | 21   | 7   | 20          |                    | LM20U                                            | 1400      | 2750      | 520  |
| 41 | 68    | 12 | 25.5 | 4   | 25 0 -0.010 |                    | LM25U                                            | 1560      | 3140      | 1120 |
| 49 | 72    | 15 | 29.5 | 5   | 30          | -0.010             | LM30U                                            | 2490      | 5490      | 1440 |

### **Model SH**

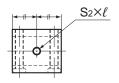


Model SH


|           | Oute   | r dimens | sions  |                        | LM casing dimensiones |   |                                       |              |             |  |  |
|-----------|--------|----------|--------|------------------------|-----------------------|---|---------------------------------------|--------------|-------------|--|--|
| Model No. | Height | Width    | Length | Mounting hole position |                       |   | Тар                                   | Through bolt |             |  |  |
|           | М      | W        | L      | В                      | B <sub>1</sub>        | С | $S_1 \times \ell_1$ $S_2 \times \ell$ |              | model No,S₃ |  |  |
| SH 3UU    | 14     | 10       | 13     | _                      | 8                     | 3 | M3×6                                  | M3×5.5       | M2          |  |  |
| SH 4UU    | 16     | 12       | 15     | _                      | 10                    | 3 | M3×6                                  | M3×6         | M2          |  |  |
| SH 5UU    | 18     | 14       | 17     | _                      | 12                    | 3 | M3×6                                  | M3×6         | M2          |  |  |
| SH 6UU    | 22     | 16       | 24     | 18                     | 9                     | 5 | M4×8                                  | M4×8         | M3          |  |  |
| SH 8UU    | 26     | 20       | 27     | 20                     | 10                    | 5 | M4×8                                  | M5×8.5       | M3          |  |  |
| SH 10UU   | 32     | 26       | 35     | 27                     | 15                    | 6 | M5×10                                 | M6×9.5       | M4          |  |  |
| SH 12UU   | 34     | 28       | 35     | 27                     | 15                    | 6 | M5×10                                 | M6×9.5       | M4          |  |  |
| SH 13UU   | 36     | 30       | 36     | 28                     | 16                    | 6 | M5×10                                 | M6×9.5       | M4          |  |  |
| SH 16UU   | 42     | 36       | 40     | 32                     | 18                    | 6 | M5×10 M6×10                           |              | M4          |  |  |
| SH 20UU   | 49     | 42       | 44     | 36                     | 22                    | 7 | M6×12 M6×12                           |              | M5          |  |  |


Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

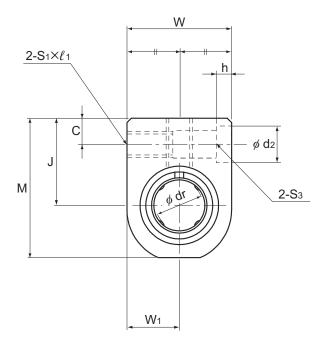
A stainless steel Linear Bushing model LM-MG, which is highly corrosion resistant, can also be incorporated at your request.


Example of Model Number for Use in Combination with Linear Bushing Units

| Linear Bushing to be combined                        | Examle of model No. |                   |
|------------------------------------------------------|---------------------|-------------------|
| Both end attached with seal                          | SH 13UU             | Standard<br>stock |
| Without seal                                         | SH 13               | Build to order    |
| Made of stainless steel; both end attached with seal | SH 13MUU            | Build to order    |






Top surface of models SH6 to SH20



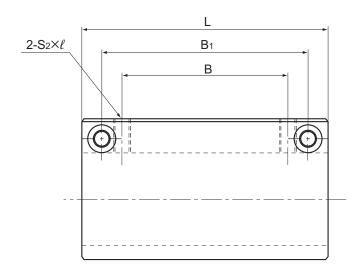
Top surface of models SH3 to SH5

|                  |             |                |     |    |                     |                                                  |           |           | • • • • • • • • • • • • • • • • • • • • |
|------------------|-------------|----------------|-----|----|---------------------|--------------------------------------------------|-----------|-----------|-----------------------------------------|
|                  |             |                |     |    |                     | Model No. of<br>Linear Bushing<br>to be combined | Basic loa | ad rating | Unit                                    |
| Center<br>height |             |                |     |    | ibed bore<br>ameter |                                                  | С         | C₀        | Mass                                    |
| J<br>±0.02       | W₁<br>±0.02 | d <sub>2</sub> | h   | dr | Tolerance           |                                                  | N         | N         | g                                       |
| 9                | 5           | 4.2            | 1.5 | 3  | 0                   | LM3UU                                            | 88.2      | 108       | 4.5                                     |
| 10               | 6           | 4.2            | 1.5 | 4  | -0.008              | LM4UU                                            | 88.2      | 127       | 7                                       |
| 11               | 7           | 4.2            | 1.5 | 5  | -0.008              | LM5UU                                            | 167       | 206       | 11                                      |
| 14               | 8           | 6.5            | 3.3 | 6  |                     | LM6UU                                            | 206       | 265       | 21.6                                    |
| 16               | 10          | 6.5            | 3.3 | 8  |                     | LM8UU                                            | 265       | 402       | 32                                      |
| 19               | 13          | 8              | 4.4 | 10 | 0                   | LM10UU                                           | 373       | 549       | 65                                      |
| 20               | 14          | 8              | 4.4 | 12 | -0.009              | LM12UU                                           | 412       | 598       | 81                                      |
| 21               | 15          | 8              | 4.4 | 13 |                     | LM13UU                                           | 510       | 775       | 90                                      |
| 24               | 18          | 8              | 4.4 | 16 |                     | LM16UU                                           | 775       | 1180      | 150                                     |
| 28               | 21          | 9.5            | 5.4 | 20 | 0<br>-0.010         | LM20UU                                           | 863       | 1370      | 215                                     |

### **Model SH-L**

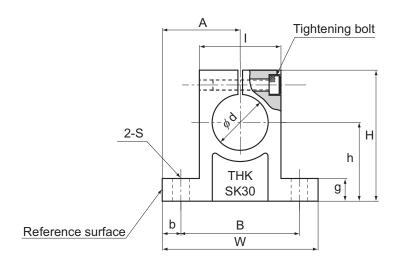


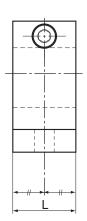
Model SH-L


|           | Oute   | er dimens | sions  |       | LM casing dimensiones |         |                     |                   |              |  |  |  |
|-----------|--------|-----------|--------|-------|-----------------------|---------|---------------------|-------------------|--------------|--|--|--|
| Model No. | Height | Width     | Length | Mount | ing hole p            | osition |                     | Тар               | Through bolt |  |  |  |
|           | M      | W         | L      | В     | B₁                    | С       | $S_1 \times \ell_1$ | $S_2 \times \ell$ | model No,S₃  |  |  |  |
| SH 3LUU   | 14     | 10        | 23     | 10    | 18                    | 3       | M3×6                | M3×5.5            | M2           |  |  |  |
| SH 4LUU   | 16     | 12        | 27     | 14    | 22                    | 3       | M3×6                | M3×6              | M2           |  |  |  |
| SH 5LUU   | 18     | 14        | 32     | 18    | 26                    | 3       | M3×6                | M3×6              | M2           |  |  |  |
| SH 6LUU   | 22     | 16        | 40     | 20    | 30                    | 5       | M4×8                | M4×8              | M3           |  |  |  |
| SH 8LUU   | 26     | 20        | 52     | 30    | 42                    | 5       | M4×8                | M5×8.5            | M3           |  |  |  |
| SH 10LUU  | 32     | 26        | 60     | 36    | 50                    | 6       | M5×10               | M6×9.5            | M4           |  |  |  |
| SH 12LUU  | 34     | 28        | 62     | 36    | 50                    | 6       | M5×10               | M6×9.5            | M4           |  |  |  |
| SH 13LUU  | 36     | 30        | 66     | 40    | 54                    | 6       | M5×10 M6×9.5        |                   | M4           |  |  |  |
| SH 16LUU  | 42     | 36        | 76     | 52    | 66                    | 6       | M5×10 M6×10         |                   | M4           |  |  |  |
| SH 20LUU  | 49     | 42        | 86     | 58    | 72                    | 7       | M6×12 M6×12         |                   | M5           |  |  |  |

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

A stainless steel Linear Bushing model LM-MG, which is highly corrosion resistant, can also be incorporated at your request.


Example of Model Number for Use in Combination with Linear Bushing Units


| Linear Bushing<br>to be combined                     | Examle of model No. |                   |
|------------------------------------------------------|---------------------|-------------------|
| Both end attached with seal                          | SH 13LUU            | Standard<br>stock |
| Without seal                                         | SH 13L              | Build to order    |
| Made of stainless steel; both end attached with seal | SH 13MLUU           | Build to order    |



|                  |             |     |     |    |                     |                                                  |           |           | • • • • • • • • • • • • • • • • • • • • |
|------------------|-------------|-----|-----|----|---------------------|--------------------------------------------------|-----------|-----------|-----------------------------------------|
|                  |             |     |     |    |                     | Model No. of<br>Linear Bushing<br>to be combined | Basic loa | ad rating | Unit                                    |
| Center<br>height |             |     |     |    | ibed bore<br>ameter |                                                  | С         | C₀        | Mass                                    |
| J<br>±0.02       | W₁<br>±0.02 | d₂  | h   | dr | Tolerance           |                                                  | N         | N         | g                                       |
| 9                | 5           | 4.2 | 1.5 | 3  | 0                   | LM3U                                             | 139       | 216       | 8.5                                     |
| 10               | 6           | 4.2 | 1.5 | 4  | -0.008              | LM4U                                             | 139       | 254       | 13                                      |
| 11               | 7           | 4.2 | 1.5 | 5  | -0.008              | LM5U                                             | 263       | 412       | 22                                      |
| 14               | 8           | 6.5 | 3.3 | 6  |                     | LM6U                                             | 324       | 529       | 35                                      |
| 16               | 10          | 6.5 | 3.3 | 8  |                     | LM8U                                             | 431       | 784       | 65                                      |
| 19               | 13          | 8   | 4.4 | 10 | 0                   | LM10U                                            | 588       | 1100      | 125                                     |
| 20               | 14          | 8   | 4.4 | 12 | -0.009              | LM12U                                            | 657       | 1200      | 155                                     |
| 21               | 15          | 8   | 4.4 | 13 |                     | LM13U                                            | 814       | 1570      | 190                                     |
| 24               | 18          | 8   | 4.4 | 16 |                     | LM16U                                            | 1230      | 2350      | 295                                     |
| 28               | 21          | 9.5 | 5.4 | 20 | 0<br>-0.010         | LM20U                                            | 1400      | 2750      | 425                                     |

# **Model SK**





Unit: mm

|           |      |     |    |    |     | Main                          | dimen      | sions      |     |    |    |                        |                                 |           |
|-----------|------|-----|----|----|-----|-------------------------------|------------|------------|-----|----|----|------------------------|---------------------------------|-----------|
| Model No. | Н    | W   | L  | В  | S   | Mounting<br>bolt<br>model No. | h<br>±0.02 | A<br>±0.05 | b   | g  | I  | Shaft<br>diameter<br>d | Tightening<br>bolt<br>model No. | Mass<br>g |
| SK 10     | 32.8 | 42  | 14 | 32 | 5.5 | M5                            | 20         | 21         | 5   | 6  | 18 | 10                     | M4                              | 24        |
| SK 12     | 37.5 | 42  | 14 | 32 | 5.5 | M5                            | 23         | 21         | 5   | 6  | 20 | 12                     | M4                              | 30        |
| SK 13     | 37.5 | 42  | 14 | 32 | 5.5 | M5                            | 23         | 21         | 5   | 6  | 20 | 13                     | M4                              | 30        |
| SK 16     | 44   | 48  | 16 | 38 | 5.5 | M5                            | 27         | 24         | 5   | 8  | 25 | 16                     | M4                              | 40        |
| SK 20     | 51   | 60  | 20 | 45 | 6.6 | M6                            | 31         | 30         | 7.5 | 10 | 30 | 20                     | M5                              | 70        |
| SK 25     | 60   | 70  | 24 | 56 | 6.6 | M6                            | 35         | 35         | 7   | 12 | 38 | 25                     | M6                              | 130       |
| SK 30     | 70   | 84  | 28 | 64 | 9   | M8                            | 42         | 42         | 10  | 12 | 44 | 30                     | M6                              | 180       |
| SK 35     | 83   | 98  | 32 | 74 | 11  | M10                           | 50         | 49         | 12  | 15 | 50 | 35                     | M8                              | 270       |
| SK 40     | 96   | 114 | 36 | 90 | 11  | M10                           | 60         | 57         | 12  | 15 | 60 | 40                     | M8                              | 420       |

### **Dedicated Shafts for Model LM**

The LM shaft of the Linear Bushing needs to be manufactured with much consideration for hardness, surface roughness and dimensional accuracy of the shaft since balls roll directly on it.

THK manufactures dedicated LM shafts for the Linear Bushing. See the specification table for standard LM shafts on **A4-104**.

Among other factors, the surface hardness of an LM shaft affects the service life of your Linear Bushing system most significantly. Therefore, take much care in selecting a material and a heat treatment method when assembling the system. In addition, as the surface hardness of the LM shaft greatly affects the service life as stated above, use care in selecting and/or handling a material and heat treatment.

#### [Material]

Generally, the following materials are used for surface hardening through induction-hardening.

- SUJ2 (JIS G 4805: high-carbon chromium bearing steel)
- SK3 to 6 (JIS G 4401: carbon tool steel)
- S55C (JIS G 4051: carbon steel for machine structural use)

For special applications, martensite stainless steel SUS440C, which is corrosion resistant, may also be used.

#### [Hardness]

We recommend surface hardness of 58 HRC ( $\rightleftharpoons$  653 HV) or higher. The depth of the hardened layer is determined by the size of the Linear Bushing; we recommend approximately 2 mm for general use.

#### [Surface Roughness]

To achieve smooth motion, the surface should preferably be finished to 0.40a or less.

#### [Dimensions of Hollow LM Shafts]

If a hollow LM shaft is required for purposes such as weight reduction, use the desired material from Table1 for the dimensions of hollow LM shafts that THK keeps in stock.

Models marked with "\*" are build-to-order items.

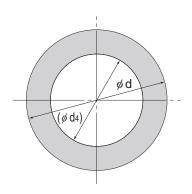
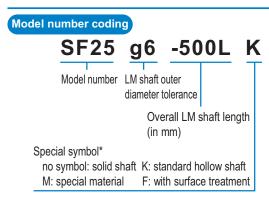




Table1 Dimensions of Hollow LM Shafts Unit: mm

| Supported model | LM shaft<br>outer<br>diameter | Inner<br>diameter |             | iss<br>/m)   |  |
|-----------------|-------------------------------|-------------------|-------------|--------------|--|
| numbers         | d                             | (φd₄)             | Solid shaft | Hollow shaft |  |
| LM 8            | 8                             | 3                 | 0.4         | 0.34         |  |
| LM 10           | 10                            | 4                 | 0.62        | 0.52         |  |
| LM 12           | 12                            | 6                 | 0.89        | 0.67         |  |
| LM 13           | 13                            | 7                 | 1.05        | 0.75         |  |
| LM 16           | 16                            | 9                 | 1.59        | 1.09         |  |
| LM 20           | 20                            | 10                | 2.47        | 1.86         |  |
| LM 20           | 20                            | 14                | 2.47        | 1.26         |  |
| LM 25           | 25                            | 15                | 3.86        | 2.47         |  |
| LM 30           | 30                            | 16                | 5.56        | 3.98         |  |
| LM 35           | 35                            | 20                | 7.57        | 5.1          |  |
| * LM 38         | 38                            | 22                | 8.92        | 5.93         |  |
| LM 40           | 40                            | 22                | 9.88        | 6.89         |  |
| LM 50           | 50                            | 25                | 15.5        | 11.6         |  |
| LM 60           | 60                            | 32                | 22.3        | 16.0         |  |
| * LM 80         | 80                            | 52.5              | 39.6        | 22.5         |  |
| * LM 100        | 100                           | 67.5              | 61.8        | 33.7         |  |

### **Standard LM Shafts**

THK manufactures high quality, dedicated LM shafts for Linear Bushing model LM series.



\*If two or more symbols are given, they are shown in an alphabetical order.

(1) [Major materials]

SUJ2 (high-carbon chromium bearing steel) THK5SP (THK standard material)

SUS440C equivalent

[Hardness]

HRC58 to 64

[Hardened layer depth]

0.8 to 2.5mm(varies with shaft diameter)

[Surface roughness]

0.20a to 0.40a

[Straightness of the LM shaft]

 $50 \mu m/300 \text{ mm}$  or less

- (2) Precision-grade LM shafts with shaft diameter tolerance of g5 or h5 are also manufactured as standard.
- (3) Corrosion resistance, martensite stainless steel LM shafts are also available.
- (4) When asking an estimate or placing an order, refer to the model number coding shown on the left.

|        | *              |                   |                               |     |     |     |     |     |     |     |           |      |      |      | •    |      |                  |
|--------|----------------|-------------------|-------------------------------|-----|-----|-----|-----|-----|-----|-----|-----------|------|------|------|------|------|------------------|
| Model  | Shaft diameter |                   | Overall LM shaft length: L mm |     |     |     |     |     |     |     | Supported |      |      |      |      |      |                  |
| No.    | d              | Tolerance<br>g6µm | 100                           | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 1000      | 1200 | 1300 | 1500 | 2000 | 3000 | model<br>numbers |
| SF 3   | 3              | -2<br>-8          | 0                             | 0   |     |     |     |     |     |     |           |      |      |      |      |      | LM 3             |
| SF 4   | 4              |                   | 0                             | 0   |     |     |     |     |     |     |           |      |      |      |      |      | LM 4             |
| SF 5   | 5              | -4<br>-12         | 0                             | 0   | 0   |     |     |     |     |     |           |      |      |      |      |      | LM 5             |
| SF 6   | 6              | ] '-              | 0                             | 0   | 0   | 0   |     |     |     |     |           |      |      |      |      |      | LM 6             |
| SF 8   | 8              | -5                | 0                             | 0   | 0   | 0   | 0   |     |     |     |           |      |      |      |      |      | LM 8, 8S         |
| SF 10  | 10             | -14               | 0                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   |           |      |      |      |      |      | LM 10            |
| SF 12  | 12             |                   |                               | 0   | 0   | 0   | 0   | 0   |     | 0   | 0         |      |      |      |      |      | LM 12            |
| SF 13  | 13             | -6<br>-17         | 0                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0         |      |      |      |      |      | LM 13            |
| SF 16  | 16             | ] ''              | 0                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0         | 0    |      | 0    |      |      | LM 16            |
| SF 20  | 20             |                   |                               | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0         | 0    | 0    | 0    |      |      | LM 20            |
| SF 25  | 25             | _7<br>_20         |                               | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0         | 0    | 0    | 0    |      |      | LM 25            |
| SF 30  | 30             |                   |                               |     | 0   | 0   | 0   | 0   | 0   | 0   | 0         | 0    | 0    | 0    | 0    |      | LM 30            |
| SF 35  | 35             |                   |                               |     |     |     | 0   | 0   |     | 0   | 0         | 0    |      | 0    | 0    |      | LM 35            |
| SF 38  | 38             | _9                |                               |     |     |     |     | 0   |     |     | 0         | 0    |      |      | 0    |      | LM 38            |
| SF 40  | 40             | -25               |                               |     |     |     | 0   | 0   | 0   | 0   | 0         | 0    | 0    | 0    | 0    | 0    | LM 40            |
| SF 50  | 50             |                   |                               |     |     |     | 0   | 0   |     | 0   | 0         | 0    | 0    | 0    | 0    | 0    | LM 50            |
| SF 60  | 60             | -10               |                               |     |     |     |     |     |     |     | 0         | 0    |      |      | 0    | 0    | LM 60            |
| SF 80  | 80             | -29               |                               |     |     |     |     |     |     |     | 0         | 0    |      |      | 0    | 0    | LM 80            |
| SF 100 | 100            | -12<br>-34        |                               |     |     |     |     |     |     |     | 0         | 0    |      |      | 0    | 0    | LM 100           |

### **Specially Machined Types**

THK also supports special machining processes such as tapping, milling, threading, through hole and end journals, as shown in the Fig.1, at your request.

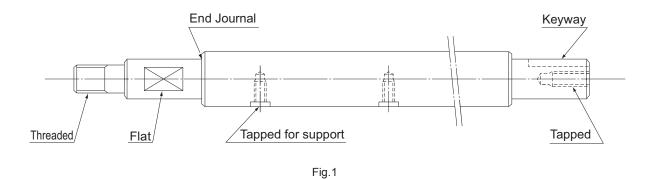



Table of Rows of Balls and Masses for Clearance-adjustable Typesand Open Types of the Linear Bushing

|                | Cleara    | nce-adjustable ty | уре       | Open type |               |           |  |
|----------------|-----------|-------------------|-----------|-----------|---------------|-----------|--|
| Shaft diameter | Model No. | Rows of balls     | Mass<br>g | Model No. | Rows of balls | Mass<br>g |  |
| 6              | LM 6-AJ   | 4                 | 7.8       | _         | _             | _         |  |
| 8              | LM 8S-AJ  | 4                 | 10        | _         | _             | _         |  |
| 0              | LM 8-AJ   | 4                 | 14.7      | _         | _             | _         |  |
| 10             | LM 10-AJ  | 4                 | 29        | _         | _             | _         |  |
| 12             | LM 12-AJ  | 4                 | 31        | _         | 3             | 25        |  |
| 13             | LM 13-AJ  | 4                 | 42        | LM 13-OP  | 3             | 34        |  |
| 16             | LM 16-AJ  | 5(4)              | 68        | LM 16-OP  | 4(3)          | 52        |  |
| 20             | LM 20-AJ  | 5                 | 85        | LM 20-OP  | 4             | 69        |  |
| 25             | LM 25-AJ  | 6(5)              | 216       | LM 25-OP  | 5(4)          | 188       |  |
| 30             | LM 30-AJ  | 6                 | 245       | LM 30-OP  | 5             | 210       |  |
| 35             | LM 35-AJ  | 6                 | 384       | LM 35-OP  | 5             | 350       |  |
| 38             | LM 38-AJ  | 6                 | 475       | LM 38-OP  | 5             | 400       |  |
| 40             | LM 40-AJ  | 6                 | 579       | LM 40-OP  | 5             | 500       |  |
| 50             | LM 50-AJ  | 6                 | 1560      | LM 50-OP  | 5             | 1340      |  |
| 60             | LM 60-AJ  | 6                 | 1820      | LM 60-OP  | 5             | 1650      |  |
| 80             | LM 80-AJ  | 6                 | 4320      | LM 80-OP  | 5             | 3750      |  |
| 100            | LM 100-AJ | 6                 | 8540      | LM 100-OP | 5             | 7200      |  |
| 120            | LM 120-AJ | 8                 | 14900     | LM 120-OP | 6             | 11600     |  |

Note) The numbers of ball rows in the table apply to types using a resin retainer. Those of types using a metal retainer are indicated in parentheses.

# **Assembling the Linear Bushing**

### [Inner Diameter of the Housing]

Table1 shows recommended housing inner-diameter tolerance for the Linear Bushing. When fitting the Linear Bushing with the housing, loose fit is normally recommended. If the clearance needs to be smaller, provide transition fit.

Table1 Housing Inner-diameter Tolerance

|           | Туре                            | Housing   |                |  |  |
|-----------|---------------------------------|-----------|----------------|--|--|
| Model No. | Accuracy                        | Loose fit | Transition fit |  |  |
| LM        | High accuracy grade (no symbol) | H7        | J7             |  |  |
| LIVI      | Precision Grade (P)             | H6        | J6             |  |  |
| LME       |                                 | H7        | K6, J6         |  |  |
| LMF       |                                 |           |                |  |  |
| LMK       |                                 |           |                |  |  |
| LMH       |                                 |           |                |  |  |
| LM-L      |                                 |           |                |  |  |
| LMF-L     |                                 |           |                |  |  |
| LMK-L     |                                 |           |                |  |  |
| LMH-L     |                                 |           |                |  |  |
| LMIF      | High accuracy grade             | H7        | J7             |  |  |
| LMIK      | (no symbol)                     |           | 07             |  |  |
| LMIH      |                                 |           |                |  |  |
| LMIF-L    |                                 |           |                |  |  |
| LMIK-L    |                                 |           |                |  |  |
| LMIH-L    |                                 |           |                |  |  |
| LMCF-L    |                                 |           |                |  |  |
| LMCK-L    |                                 |           |                |  |  |
| LMCH-L    |                                 |           |                |  |  |

#### **Point of Design**

**Assembling the Linear Bushing** 

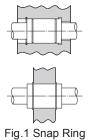
#### [Clearance between the Nut and the LM Shaft]

When using the Linear Bushing in combination with an LM shaft, use normal clearance in ordinary use and small gap if the clearance is to be minimized.

Note1) If the clearance after installation is to be negative, it is preferable not to exceed the radial clearance tolerance indicated in the specification table.

Note2) The shaft tolerance for Linear Bushing models SC, SL SH and SH-L falls under high accuracy grade (no symbol).

Table2 Shaft Outer-diameter Tolerance


|           | Туре                            | LM Shaft         |           |  |  |
|-----------|---------------------------------|------------------|-----------|--|--|
| Model No. | Accuracy                        | Normal clearance | Small gap |  |  |
| LM        | High accuracy grade (no symbol) | f6, g6           | h6        |  |  |
| LIVI      | Precision Grade (P)             | f5, g5           | h5        |  |  |
| LME       | _                               | h7               | k6        |  |  |
| LMF       |                                 |                  |           |  |  |
| LMK       |                                 |                  |           |  |  |
| LMH       |                                 |                  |           |  |  |
| LM-L      |                                 |                  |           |  |  |
| LMF-L     |                                 |                  |           |  |  |
| LMK-L     |                                 |                  |           |  |  |
| LMH-L     |                                 |                  |           |  |  |
| LMIF      | High accuracy grade             | f6, g6           | h6        |  |  |
| LMIK      | (no symbol)                     |                  | 110       |  |  |
| LMIH      |                                 |                  |           |  |  |
| LMIF-L    |                                 |                  |           |  |  |
| LMIK-L    |                                 |                  |           |  |  |
| LMIH-L    |                                 |                  |           |  |  |
| LMCF-L    |                                 |                  |           |  |  |
| LMCK-L    |                                 |                  |           |  |  |
| LMCH-L    |                                 |                  |           |  |  |

#### [Mounting the Nut]

Although the Linear Bushing does not require a large amount of strength for securing it in the axial direction, do not rely only on a press fit to support the nut. For the housing inner-diameter tolerance, see Table 1 on **A4-106**.

#### Installing the Standard Type

Fig.1 and Fig.2 show examples of installing the standard type Linear Bushing. When securing the Linear Bushing, use snap rings or stopper plates.



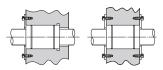



Fig.2 Stopper Plate

#### ■ Snap Ring for Installation

To secure Linear Bushing model LM, snap rings indicated in Table3 are available.

Note1) For models indicated with parentheses, use C-shape

concentric snap rings.

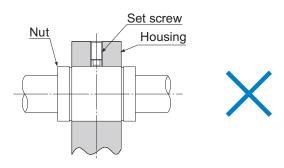
Note2) The Table3 commonly applies to models LM, LM-GA, LM-MG and LM-L.

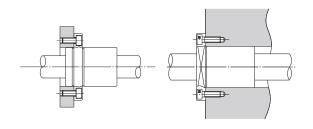
Table3 Types of Snap Rings

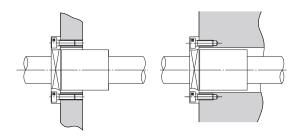
|           | Snap ring           |                   |                     |                   |  |  |  |
|-----------|---------------------|-------------------|---------------------|-------------------|--|--|--|
|           | For oute            |                   | For inner surface   |                   |  |  |  |
| Model No. | Needle snap<br>ring | C-shape snap ring | Needle snap<br>ring | C-shape snap ring |  |  |  |
| LM 3      |                     |                   | AR 7                |                   |  |  |  |
| LM 4      |                     |                   | 8                   | _                 |  |  |  |
| LM 5      | WR 10               | 10                | 10                  | 10                |  |  |  |
| LM 6      | 12                  | 12                | 12                  | 12                |  |  |  |
| LM 8      |                     | 15                | 15                  | 15                |  |  |  |
| LM 8S     |                     | 15                | 15                  | 15                |  |  |  |
| LM 10     | 19                  | 19                | 19                  | 19                |  |  |  |
| LM 12     | 21                  | 21                | 21                  | 21                |  |  |  |
| LM 13     | 23                  | 22                | 23                  |                   |  |  |  |
| LM 16     | 28                  | 1                 | 28                  | 28                |  |  |  |
| LM 20     | 32                  |                   | 32                  | 32                |  |  |  |
| LM 25     | 40                  | 40                | 40                  | 40                |  |  |  |
| LM 30     | 45                  | 45                | 45                  | 45                |  |  |  |
| LM 35     | 52                  | 52                | 52                  | 52                |  |  |  |
| LM 38     | 1                   | 56•58             | 57                  | -                 |  |  |  |
| LM 40     | 1                   | 60                | 60                  | 60                |  |  |  |
| LM 50     | _                   | 80                | 80                  | 80                |  |  |  |
| LM 60     | _                   | 90                | 90                  | 90                |  |  |  |
| LM 80A    | _                   | 120               | 120                 | 120               |  |  |  |
| LM 100A   | _                   | (150)             | 150                 | _                 |  |  |  |
| LM 120A   | _                   | (180)             | 180                 | _                 |  |  |  |

#### ■Set Screws Not Allowed

Securing the nut by pressing the outer surface with one set screw as shown in Fig.3 will cause the nut to be deformed.





Fig.3

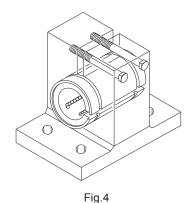

#### **Point of Design**

**Assembling the Linear Bushing** 

#### Installing a Flanged Type

With models LMF, LMK, LMH, LMIF, LMCF, LMIK, LMCK, LMIH, and LMCH, the nut is integrated with a flange. Therefore, the Linear Bushing can be mounted only via the flange.

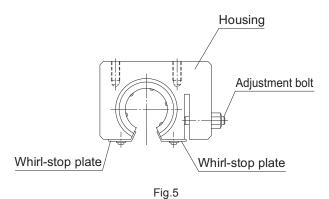





Mounted via socket and spigot joint

Mounted via a flange only

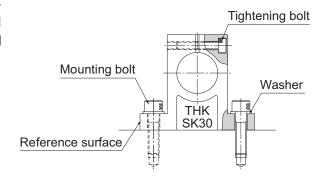
#### Installing a Clearance-adjustable Type


To adjust the clearance of a clearance-adjustable type (-AJ), use a housing that allows adjustment of the nut outer diameter so as to facilitate the adjustment of the clearance between the Linear Bushing and the LM shaft. Positioning the slit of the Linear Bushing at an angle of 90° with the housing's slit will provide uniform deformation in the circumferential direction. (See Fig.4.)



#### Mounting an Open Type

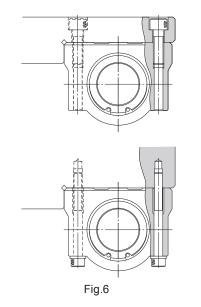
For an open type (-OP), also use a housing that allows adjustment of the nut outer diameter as shown in Fig.5.


Open types are normally used with a light preload. Be sure not to give an excessive preload.



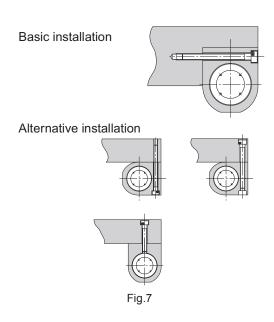
**证版 A4-109** 

#### [Mounting the Shaft End Support]


Shaft end support model SK can easily be secured to the table using mounting bolts. Model SK enables the LM shaft to firmly be secured using tightening bolts.



#### [Installing an LM Case Unit]


#### Attaching Model SC (SL)

Since models SC and SL can be attached from the top or bottom by simply tightening it using bolts, the installation time can be shortened. (See Fig.6.)



#### Attaching Model SH (SH-L)

Since models SH and SH-L can be attached from the top or bottom by simply tightening it using bolts, the installation time can be shortened. (See Fig.7.)



#### **Point of Design**

#### **Assembling the Linear Bushing**

#### [Incorporating the Nut]

When incorporating the standard Linear Bushing into a housing, use a jig and drive in the nut, or use a flatter plate and gently hit the nut, instead of directly hitting the side plate or the seal. (See Fig.8.)

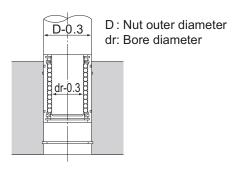
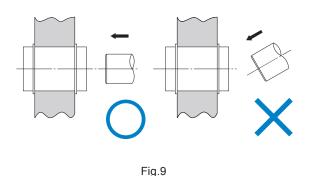




Fig.8

#### [Inserting the LM Shaft]

When inserting the LM shaft into the Linear Bushing, align the center of the shaft with that of the nut and gently insert the shaft straightforward into the nut. If the shaft is slanted while it is inserted, balls may fall off or the retainer may be deformed. (See Fig.9.)



#### [When Under a Moment Load]

When using the Linear Bushing, make sure the load is evenly distributed on the whole ball raceway. In particular, if a moment load is applied, use two or more Linear Bushing units on the same LM shaft and secure an adequately large distance between the units.

If using the Linear Bushing under a moment load, also calculate the equivalent radial load and identify the correct model number. (See **A4-40**.)

#### [Rotational Use Not Allowed]

The Linear Bushing is not suitable for rotational use for a structural reason. (See Fig.10.) Forcibly rotating it may cause an unexpected accident.

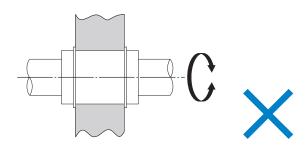



Fig.10

#### [Precautions on Installing an Open Three-ball-row Type Linear Bushing]

When installing an open three-ball-row type Linear Bushing, mount it while taking into account the load distribution as indicated in Fig.11.

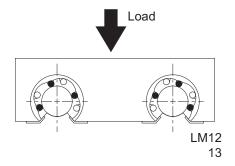



Fig.11

#### [Attaching Felt Seal Model FLM]

The felt seal can be press-fit into a housing finished to H7, but cannot be used as a stopper for preventing the Linear Bushing from coming off. Be sure to use the felt seal by attaching it as indicated in the Fig.12.

Also make sure to impregnate the felt with sufficient lubricant before attaching it.

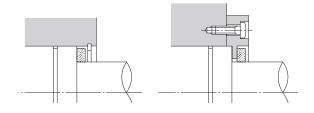



Fig.12

# **Options**

### **Linear Bushing (Options)**

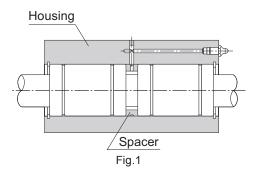
### Lubrication

The Linear Bushing requires grease or oil as a lubricant for its operation.

#### [Grease Lubrication]

Before mounting the product onto the LM shaft, apply grease to each row of balls inside the Guide Ball Bushing.

Thereafter apply grease as necessary, in accordance with usage and other conditions noted above, or attach housing as shown in Fig.1, or apply grease directly to the LM shaft.


We recommend using high-quality lithium-soap group grease No. 2.

#### [Oil Lubrication]

To lubricate, apply lubricant to the LM shaft one drop at a time, as needed, or attach housing as shown in Fig.1, in the same manner as when lubricating with grease.

Commonly used lubricants include turbine oil, machine oil, and spindle oil.

In addition to the procedures described the above, an oil hole or grease nipple can also be used for lubrication. For further information, contact THK.



### **Material and Surface Treatment**

For the Linear Bushing and the LM shaft, highly corrosion-resistant stainless steel types are available for some models.

Although the LM shaft can be surface treated, some types may not be suitable for the treatment. Contact THK for details.

# **Dust prevention**

Entrance of dust or other foreign material into the Linear Bushing will cause abnormal wear or shorten the service life. When entrance of dust or other foreign material is a possibility, it is important to select effective seals and/or a dust-control device that meets the service environment conditions. For the Linear Bushing, a special synthetic rubber seal that is highly resistant to wear and a felt seal (highly dust preventive with low seal resistance) are available as contamination protection accessories.

In addition, THK produces round bellows. Contact us for details.

# Felt Seal Model FLM

Linear Bushing model LM series include types equipped with a special synthetic rubber seal (LM··· UU, U). If desiring to have an additional contamination protection measure, or desiring to lower the seal resistance, use the felt seal model FLM. (See Table1)

#### [Dimensions of the Felt Seal]

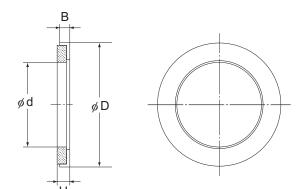



Table1 Major Dimensions of FLM

Unit: mm

| Supported        | Main dimensions |     |    | Supoprted |                         |
|------------------|-----------------|-----|----|-----------|-------------------------|
| model<br>numbers | d               | D   | В  | Н         | linear bushing<br>model |
| FLM 6            | 6               | 12  | 2  | 2         | LM 6                    |
| FLM 8            | 8               | 15  | 2  | 2         | LM 8                    |
| FLM 10           | 10              | 19  | 3  | 3         | LM 10                   |
| FLM 12           | 12              | 21  | 3  | 3         | LM 12                   |
| FLM 13           | 13              | 23  | 3  | 3         | LM 13                   |
| FLM 16           | 16              | 28  | 4  | 5         | LM 16                   |
| FLM 20           | 20              | 32  | 4  | 5         | LM 20                   |
| FLM 25           | 25              | 40  | 5  | 6         | LM 25                   |
| FLM 30           | 30              | 45  | 5  | 6         | LM 30                   |
| FLM 35           | 35              | 52  | 5  | 6         | LM 35                   |
| FLM 38           | 38              | 57  | 5  | 6         | LM 38                   |
| FLM 40           | 40              | 60  | 5  | 6         | LM 40                   |
| FLM 50           | 50              | 80  | 10 | 11        | LM 50                   |
| FLM 60           | 60              | 90  | 10 | 11        | LM 60                   |
| FLM 80           | 80              | 120 | 10 | 11        | LM 80                   |
| FLM 100          | 100             | 150 | 10 | 11        | LM 100                  |

### **Model Number Coding**

Model number configurations differ depending on the model features. Refer to the corresponding sample model number configuration.

#### [Linear Bushing]

 Plastic resin cages standard type models LM, LM-L, LME, LMF, LMF-L, LMK, LMK-L, LMH, LMH-L, LMIF, LMIK, LMIH, LMIF-L, LMIK-L, LMIH-L, LMCF-L, LMCK-L, LMCH-L, SC, SL, SH, SH-L



 Plastic resin cages Stainless steel type models LM-M, LM-MG, LMF-M, LMF-ML, LMK-M, LMK-ML



 Metal cage type models LM-GA, LM-MGA, LME-GA



#### [LM Shaft End Support]

Model SK

SK20 Model No.

#### [LM Shaft]

Model SF

Model No. LM shaft outer diameter tolerance Overall LM shaft length (in mm)

Special symbol\* no symbol: solid shaft K: standard hollow shaft M: special material F: with surface treatment

#### [Felt Seal]

Model FLM



### **Notes on Ordering**

For high temperature applications, a double-ended nut seal (symbol: UU) can be fitted to linear bushes for metal cages (symbol: A). However, cages without seals are recommended since the seal is only heat resistant to a temperature of 80°C.

<sup>\*</sup>If two or more symbols are given, they are shown in an alphabetical order.

<sup>\*</sup>For information shaft diameters, permissible shaft diameter error and standard stock lengths, see **A4-104**.

### **Precautions on Use**

#### **Linear Bushing**

#### [Handling]

- (1) Disassembling each part may cause dust to enter the system or degrade mounting accuracy of parts. Do not disassemble the product.
- (2) Take care not to drop or strike the Linear Bushing. Doing so may cause injury or damage. Giving an impact to it could also cause damage to its function even if the product looks intact.
- (3) When handling the product, wear protective gloves, safety shoes, etc., as necessary to ensure safety.

#### [Precautions on Use]

- (1) Prevent foreign material, such as cutting chips or coolant, from entering the product. Failure to do so may cause damage.
- (2) If the product is used in an environment where cutting chips, coolant, corrosive solvents, water, etc., may enter the product, use bellows, covers, etc., to prevent them from entering the product.
- (3) Do not use the product at temperature of 80°C or higher. Exposure to higher temperatures may cause the resin/rubber parts to deform/be damaged.
- (4) If foreign material such as cutting chips adheres to the product, replenish the lubricant after cleaning the product.
- (5) Micro-strokes tend to obstruct oil film to form on the raceway in contact with the rolling element, and may lead to fretting corrosion. Take consideration using grease offering excellent fretting prevention. It is also recommended that a stroke movement corresponding to the length of the outer cylinder be made on a regular basis to make sure oil film is formed between the raceway and rolling element.
- (6) Do not use undue force when fitting parts (pin, key, etc.) to the product. This may generate permanent deformation on the raceway, leading to loss of functionality.
- (7) Insert the shaft straight through the opening. Inserting the shaft at an angle can introduce foreign matter, damage internal components, or cause balls to fall out.
- (8) Using this product with any balls removed may result in premature damage.
- (9) Please contact THK if any balls fall out; do not use the product if any balls are missing.
- (10) If an attached component is insufficiently rigid or mounted incorrectly, the bearing load will be concentrated at one location and performance will decline significantly. Make sure the housing and base are sufficiently rigid, the anchoring bolts are strong enough, and the component is mounted correctly.

#### [Lubrication]

- (1) Thoroughly wipe off anti-rust oil and feed lubricant before using the product.
- (2) Do not mix different lubricants. Mixing greases using the same type of thickening agent may still cause adverse interaction between the two greases if they use different additives, etc.
- (3) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, use the grease appropriate for the specification/environment.
- (4) To lubricate the product, apply lubricant directly to the raceway surface and execute a few preliminary strokes to ensure that the interior is fully lubricated.
- (5) The consistency of grease changes according to the temperature. Take note that the slide resistance of the Linear Bushing also changes as the consistency of grease changes.

- (6) After lubrication, the slide resistance of the Linear Bushing may increase due to the agitation resistance of grease. Be sure to perform a break-in to let the grease spread fully, before operating the machine.
- (7) Excess grease may scatter immediately after lubrication, so wipe off scattered grease as necessary.
- (8) The properties of grease deteriorate and its lubrication performance drops over time, so grease must be checked and added properly according to the use frequency of the machine.
- (9) The greasing interval varies depending on the use condition and service environment. Set the final lubrication interval/amount based on the actual machine.

#### [Storage]

When storing the Linear Bushing, enclose it in a package designated by THK and store it in a room while avoiding high temperature, low temperature and high humidity.

#### [Disposal]

Dispose of the product properly as industrial waste.



# Guide Ball Bushing/Linear Bushing

**THK** General Catalog

# **Guide Ball Bushing/Linear Bushing**

# **THK** General Catalog

# **B** Support Book

| Features and Types B4-4 Features of the Guide Ball Bushing B4-4                                                   | Notes on Ordering.      B4-49 |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Structure and Features  B4-4                                                                                      | Precautions on Use 34-50      |
| • Examples of Changing the Linear Bushing to the Guide Ball Bushing <b>B</b> 4-6  Types of the Guide Ball Bushing |                               |
| Types and Features                                                                                                |                               |
| Delat of Octoor                                                                                                   |                               |
| Point of Selection                                                                                                |                               |
| Steps for Selecting a Guide Ball Bushing       B4-8                                                               |                               |
| Rated Load and Nominal Life B4-9                                                                                  |                               |
| Precautions To Be Taken if an Eccentric Load Is Applied   4-12                                                    | 2                             |
| Mounting Procedure and Maintenance B4-13                                                                          | 3                             |
| Assembling the Guide Ball Bushing B4-13                                                                           | 3                             |
| Options B4-10                                                                                                     | 6                             |
| LubricationB4-10                                                                                                  | 6                             |
| Dust prevention B4-10                                                                                             | 5                             |
| Model No B4-1                                                                                                     | 7                             |
| Model Number Coding  B4-1                                                                                         | 7                             |
| Precautions on Use B4-18                                                                                          | 3                             |
| Features and Types 📴4-2                                                                                           |                               |
| Features of the Linear Bushing 54-20                                                                              |                               |
| Structure and Features                                                                                            |                               |
| Types of the Linear Ball Bushing <u>B</u> 4-22  • Types and Features <u>B</u> 4-22                                |                               |
| Classification Table B4-3                                                                                         |                               |
| Point of Selection B4-3                                                                                           | 1                             |
| Flowchart for Selecting a Linear Bushing <b>B</b> 4-3-                                                            |                               |
| • Steps for Selecting a Linear Bushing <b>5</b> 4-34                                                              | 4                             |
| Rated Load and Nominal Life B4-3                                                                                  |                               |
| Precautions To Be Taken if an Eccentric Load Is Applied <b>1</b> 4-34                                             | 3                             |
| Mounting Procedure and Maintenance <b>B</b> 4-39                                                                  |                               |
| Assembling the Linear Bushing E4-3                                                                                |                               |
| LubricationB4-4                                                                                                   |                               |
| Options B4-40                                                                                                     |                               |
| Material and Surface Treatment B4-4                                                                               |                               |
| Dust prevention B4-4' Felt Seal Model FLM B4-4'                                                                   |                               |
|                                                                                                                   |                               |
| • Model Number Coding B4-4                                                                                        |                               |
| wiodel Nulliber Coulling                                                                                          |                               |

# A Product Descriptions (Separate)

| Features and Types Features of the Guide Ball Bushing • Structure and Features • Examples of Changing the Linear Bushing to the Guide Ball Bushing  Types of the Guide Ball Bushing • Types and Features | A4-4<br>A4-4<br>A4-6<br>A4-7                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Point of Selection  Flowchart for Selecting a Guide Ball Bushing  • Steps for Selecting a Guide Ball Bushing  Rated Load and Nominal Life                                                                | A4-8<br>A4-8<br>A4-9<br>A4-12<br>A4-12                                        |
| <b>Dimensional Drawing, Dimensional Table</b> Model LG                                                                                                                                                   | . <b>A</b> 4-14                                                               |
| Point of Design Assembling the Guide Ball Bushing                                                                                                                                                        |                                                                               |
| Options Lubrication Dust prevention                                                                                                                                                                      | A4-19                                                                         |
| Model No.  • Model Number Coding                                                                                                                                                                         |                                                                               |
| Precautions on Use                                                                                                                                                                                       | A4-21                                                                         |
| Factures and Types                                                                                                                                                                                       |                                                                               |
| Features and Types  Features of the Linear Bushing  • Structure and Features  Types of the Linear Ball Bushing  • Types and Features  Classification Table                                               | A4-23<br>A4-26<br>A4-26                                                       |
| Structure and Features     Types of the Linear Ball Bushing      Types and Features                                                                                                                      | A4-23<br>A4-26<br>A4-26<br>A4-36<br>A4-38<br>A4-38<br>A4-39<br>A4-42<br>A4-42 |

| Model LME                                                           | A4-50         |
|---------------------------------------------------------------------|---------------|
| Model LM-L                                                          | A4-52         |
| Model LMF                                                           |               |
| Model LMF-M (Stainless Steel Type)                                  | A4-56         |
| Model LMF-L                                                         | A 4-58        |
| Model LMF-ML (Stainless Steel Type)                                 | A4-60         |
| Model LMK                                                           |               |
| Model LMK-M (Stainless Steel Type)                                  | A4-64         |
| Model LMK-L                                                         |               |
| Model LMK-ML (Stainless Steel Type)                                 | A4-68         |
| Model LMH                                                           | A4-70         |
| Model LMH-L                                                         | A4-72         |
| Model LMIF                                                          | A4-74         |
| Model LMIF-L                                                        | A4-76         |
| Model LMCF-L                                                        | A4-78         |
| Model LMIK                                                          | A4-80         |
| Model LMIK-L                                                        | A4-82         |
| Model LMCK-L                                                        | A4-84         |
| Model LMIH                                                          |               |
| Model LMIH-L                                                        | A4-88         |
| Model LMCH-L                                                        |               |
| Models SC6 to 30                                                    |               |
| Models SC35 to 50                                                   |               |
| Model SL                                                            |               |
| Model SH                                                            |               |
| Model SH-L                                                          |               |
| Model SK                                                            |               |
| Dedicated Shafts for Model LM                                       |               |
| Standard LM Shafts                                                  |               |
| Specially Machined Types                                            | A4-105        |
| Table of Rows of Balls and Masses for Clearance-adjustable Typesand |               |
| Open Types of the Linear Bushing                                    | A4-105        |
| Date ( of Davies                                                    | <b></b> 4 400 |
| Point of Design                                                     |               |
| Assembling the Linear Bushing                                       | A4-100        |
| Options                                                             | Λ / 112       |
| Lubrication                                                         |               |
| Material and Surface Treatment                                      |               |
| Dust prevention                                                     |               |
| Felt Seal Model FLM                                                 |               |
| I GIL GEAL MIDUEL LEM                                               | 4-114         |
| Model No.                                                           | Δ4-115        |
| Model Number Coding                                                 |               |
| Notes on Ordering                                                   |               |
|                                                                     |               |
| Precautions on Use                                                  | A4-117        |

# **Features and Types**

# **Features of the Guide Ball Bushing**

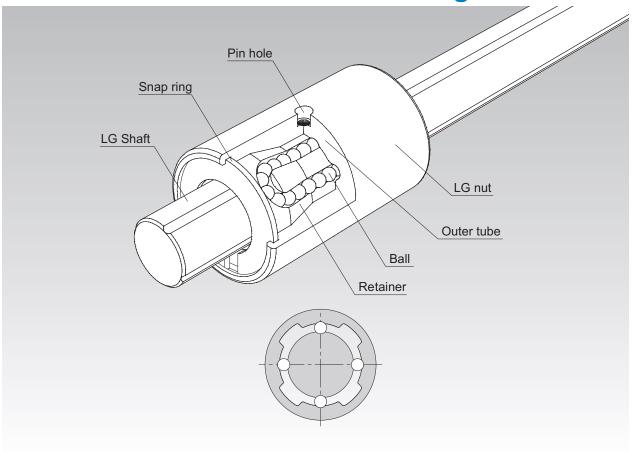



Fig.1 Structure of the Guide Ball Bushing model LG

### **Structure and Features**

Since model LG has 4 rows of circular arc grooves (raceways), it does not need a mechanism to prevent the outer tube from rotating. In addition, its load rating is much larger than Linear Bushing model LM with the same dimensions. Therefore, replacing the Linear Bushing with the Guide Ball Bushing will reduce the size and cost of the guide unit and extend the service life.



#### **Features and Types**

Features of the Guide Ball Bushing

#### [Higher Load Rating than the Linear Bushing]

Since model LG ensures an R contact through the use of circular arc grooves for ball contact, it achieves a load rating more than twice that of point-contact Linear Bushing model LM with the same size.

#### [A Rotation Stopper is Unnecessary Because of Raceways]

Since model LG has circular arc grooves, it does not need a rotation stopper required for Linear Bushing model LM, and allows the machine design to be compact.

#### [Interchangeable in Dimensions with Linear Bushing Model LM]

Since the outer tube of model LG has the same outer diameter and length as that of Linear Bushing model, LM, it is possible to replace Linear Bushing model LM with Guide Ball Bushing model LG as assemblies.

#### [Various Combinations of Nut and Shaft are Available (Any Combination is Allowed)]

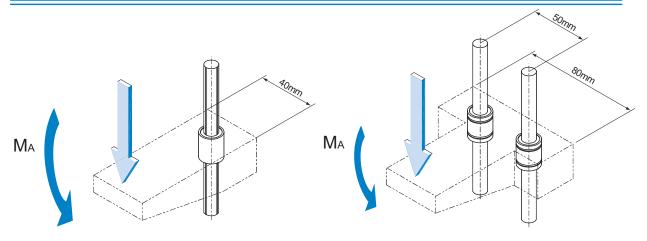
As with the Linear Bushing, any combination of the LG nut and the LG shaft of model LG is allowed.



### **Examples of Changing the Linear Bushing to the Guide Ball Bushing**

#### [Advantage of using the Guide Ball Bushing 1: Longer service life]

Since model LG has a rated load more than 2.4 times the Linear Bushing with the same dimensions, replacing the Linear Bushing with model LG will increase the service life by more than 13.8 times.


Table1 Comparison of the service life between Guide Ball Bushing mode LG and Linear Bushing model LM

| Model No. | Basic dynamic load rating:<br>C [N] | Load rating ratio | Service life ratio |
|-----------|-------------------------------------|-------------------|--------------------|
| LG4S      | 335                                 | 3.8 times         | 54.8 times         |
| LM4       | 88.2                                | 3.6 times         | 54.6 times         |
| LG6S      | 494                                 | 2.4 times         | 13.8 times         |
| LM6       | 206                                 | 2.4 times         | 13.0 tillles       |
| LG8S      | 796                                 | 3.0 times         | 27.0 times         |
| LM8       | 265                                 | 5.0 times         | 27.0 times         |

#### [Advantage of using the Guide Ball Bushing 2: Smaller machine size]

Since the Linear Bushing is not suitable for applications where a load in the rotational direction is applied, it is necessary to use two or more Linear Bushing units in parallel or have a rotation stopper mechanism even under conditions where a torque is not applied. In contrast, the Guide Ball Bushing, which has a structure containing four rows of circular arc grooves, is operable with a single shaft and therefore contributes to downsizing the machine, unless an excessive load is applied.

#### Achieves a load carrying capacity approximately three times the Linear Bushing in a half space



\* A rotation stopper mechanism using a pin is provided

One unit of Guide Ball Bushing model LG8S is used

Two units of Linear Bushing model LM8 are used

Table2 Comparison of the permissible moment between Guide Ball Bushing mode LG and Linear Bushing model LM

| Model No.                 | Permissible moment: M <sub>A</sub> [N-m] |  |
|---------------------------|------------------------------------------|--|
| One unit of LG8S is used  | 1.46                                     |  |
| Two units of LM8 are used | 0.45                                     |  |

#### **Features and Types**

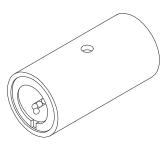
Types of the Guide Ball Bushing

# **Types of the Guide Ball Bushing**

# **Types and Features**

### **Model LG-S**

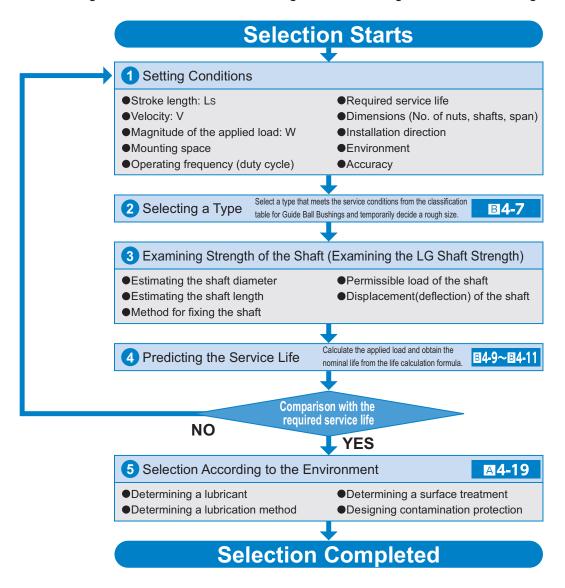
In this type, the diameter and the length of the LG nut are the same as that of Linear Bushing model LM. This type is dimensionally interchangeable with model LM.


#### Specification Table⇒A4-14



#### Model LG-L

Model LG-L is a long type in which the overall length of the LG nut is longer than that of model LG-S to increase the load carrying capacity.


#### Specification Table⇒A4-14



# Flowchart for Selecting a Guide Ball Bushing

### Steps for Selecting a Guide Ball Bushing

The following flowchart should be used as a guide for selecting a Guide Ball Bushing.



#### **Point of Selection**

**Rated Load and Nominal Life** 

# **Rated Load and Nominal Life**

#### [Load Rating]

The rated load of the Guide Ball Bushing varies according to the position of balls in relation to the load direction. The basic load ratings indicated in the specification tables each indicate the value when one row of balls receiving a load are directly under the load.

If the Guide Ball Bushing is mounted so that two rows of balls evenly receive the load in the load direction, the rated load changes as shown in Table1.

Table1 Rated load of the Guide Ball Bushing

| Rows of balls | Ball position | Load Rating |
|---------------|---------------|-------------|
| 4 rows        |               | 1.41×C      |

Note: For specific values for "C" above, see the respective specification table.

#### [Calculating the Nominal Life]

The nominal life of the Guide Ball Bushing is obtained using the following equation.

$$L = \left(\frac{f_{\text{H}} \cdot f_{\text{T}} \cdot f_{\text{C}}}{f_{\text{W}}} \cdot \frac{C}{P_{\text{C}}}\right)^{3} \times 50$$

L : Nominal life (km)

C : Basic dynamic load rating (N)

P<sub>c</sub> : Calculated load (N)

f<sub>⊤</sub> : Temperature factor

fc : Contact factor (see Table2 on **B4-11**)

f<sub>w</sub>: Load factor (see Table3 on **■4-11**)

f<sub>H</sub>: Hardness factor (see Fig.1)

#### When a Moment Load is Applied to a Single Nut or Two Nuts in Close Contact with Each Other

When a moment load is applied to a single nut or two nuts in close contact with each other, calculate the equivalent radial load at the time the moment is applied.

#### $P_u = K \cdot M$

P<sub>u</sub> : Equivalent radial load (N)

(with a moment applied)

K : Equivalent factors

(see Table4 to Table5 on **A4-12**)

M : Applied moment (N-mm)

However, "P<sub>u</sub>" is assumed to be within the basic static load rating (C₀).

#### When a Moment Load and a Radial Load are Simultaneously Applied

When a moment and a radial load are applied simultaneously, calculate the service life based on the sum of the radial load and the equivalent radial load.

#### ■f<sub>H</sub>: Hardness Factor

To maximize the load capacity of the Guide Ball Bushing, the hardness of the raceways needs to be between 58 to 64 HRC.

If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor ( $f_{\rm H}$ ).

Normally,  $f_H$  = 1.0 since the Guide Ball Bushing has sufficient hardness.

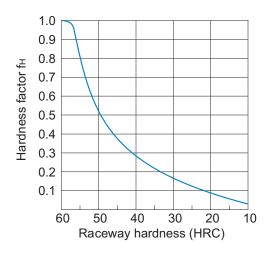



Fig.1 Hardness Factor (f<sub>H</sub>)

#### **Point of Selection**

**Rated Load and Nominal Life** 

#### ■f<sub>T</sub>:Temperature Factor

The temperature of the environment where the Guide Ball Bushing is used must be  $80^{\circ}$ C or below. Therefore, adopt a temperature factor  $f_{\tau} = 1.0$ .

The Guide Ball Bushing does not support high temperature. Therefore, if the environment temperature exceeds 80°C, it is necessary to use another product.

#### ■fc: Contact Factor

When multiple nuts are used in close contact with each other, their linear motion is affected by moments and mounting accuracy, making it difficult to achieve uniform load distribution. In such applications, multiply the basic load rating (C) and ( $C_0$ ) by the corresponding contact factor in Table2.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table2.

Table2 Contact Factor (fc)

| Number of nuts in close contact with each other | Contact factor fc |
|-------------------------------------------------|-------------------|
| 2                                               | 0.81              |
| 3                                               | 0.72              |
| 4                                               | 0.66              |
| 5                                               | 0.61              |
| Normal use                                      | 1                 |

#### ■fw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop motion. Therefore, when loads applied on a Guide Ball Bushing cannot be measured, or when speed and impact have a significant influence, divide the basic load rating (C) or (C<sub>0</sub>) by the corresponding load factor in Table3.

Table3 Load Factor (fw)

| Vibrations/<br>impact | Speed(V)                                                  | f <sub>w</sub> |
|-----------------------|-----------------------------------------------------------|----------------|
| Faint                 | Very low<br>V≦0.25m/s                                     | 1 to 1.2       |
| Weak                  | Slow<br>0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m> | 1.2 to 1.5     |
| Medium                | Medium<br>1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>    | 1.5 to 2       |
| Strong                | High<br>V>2m/s                                            | 2 to 3.5       |

#### [Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

$$L_h = \frac{L \times 10^3}{2 \times \ell_s \times n_1 \times 60}$$

 $L_h$ : Service life time (h)

 $\ell_{\rm S}$  : Stroke length (m)

n<sub>1</sub>: Number of reciprocations per minute

(min<sup>-1</sup>)

# Precautions To Be Taken if an Eccentric Load Is Applied

Model LG achieves a much higher load-carrying capacity in receiving the eccentric load (moment and torque) than Linear Bushing model LM because of 4 rows of raceways. However, under conditions where the eccentric load is larger, the product may result in poor operation or early failure. In such cases, we recommend using Ball Spline model LBS or LT, both of which have larger load-carrying capacities (see **3-4** onward).

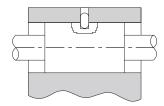
# **Mounting Procedure and Maintenance**

**Guide Ball Bushing** 

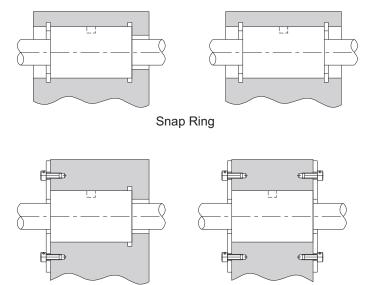
# **Assembling the Guide Ball Bushing**

#### [Inner Diameter of the Housing]

Table1 shows recommended housing inner-diameter tolerance for the Guide Ball Bushing. When fitting the Guide Ball Bushing with the housing, loose fit is normally recommended. If the clearance needs to be smaller, provide transition fit.


Table1 Housing Inner-diameter Tolerance

| General conditions                            | H6 |
|-----------------------------------------------|----|
| If the accuracy does not need to be very high | H7 |


#### [Mounting the Nut]

Although the Guide Ball Bushing does not require a large amount of strength for securing it in the LG shaft direction, do not support the nut only with driving fitting. For the housing inner-diameter tolerance, see Table1.

Mounting model LG using a pin



Mounting model LG as with the conventional Linear Bushing



Stopper Plate

#### **■**Snap Ring for Installation


To secure the Guide Ball Bushing model LG, snap rings indicated in Table2 are available.

Table2 Types of Snap Rings

|           | Snap ring         |                   |  |
|-----------|-------------------|-------------------|--|
| Model No. | For inner surface |                   |  |
| Model No. | Needle snap ring  | C-shape snap ring |  |
| LG 4      | 8                 | _                 |  |
| LG 6      | 12                | 12                |  |
| LG 8      | 15                | 15                |  |

#### ■Set Screws Not Allowed

Securing the nut by pressing the outer surface with one set screw as shown in Fig.1 will cause the nut to be deformed.



#### [Incorporating the Nut]

When incorporating the Guide Ball Bushing into a housing, use a jig and drive in the nut, or use a flatter plate and gently hit the nut, instead of directly hitting the side plate or the seal. (see Fig.2).

Unit: mm

| Model No.   | dr  | Tolerance     |
|-------------|-----|---------------|
| LG 4S/LG 4L | 3.6 |               |
| LG 6S/LG 6L | 5.6 | -0.1<br> -0.3 |
| LG 8S/LG 8L | 7.5 | 0.0           |

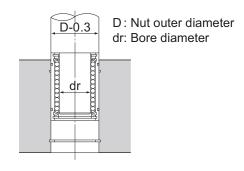



Fig.2

#### [Inserting the LG Shaft]

When inserting the LG shaft into the Guide Ball Bushing, align the center of the shaft with that of the nut and gently insert the shaft straightforward into the nut. If the shaft is slanted while it is inserted, balls may fall off or the retainer may be deformed (see Fig.3).

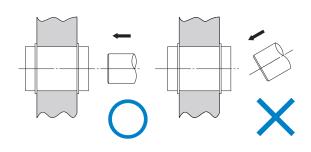



Fig.3

#### **Mounting Procedure and Maintenance**

Assembling the Guide Ball Bushing

#### [When Under a Moment Load]

When using the Guide Ball Bushing, make sure that the load is evenly distributed on the whole ball raceway. In particular, if a moment load is applied, use two or more Guide Ball Bushing units on the same LG shaft and secure an adequately large distance between the units.

If using the Guide Ball Bushing under a moment load, also calculate the equivalent radial load and identify the correct model number. (See **E4-10**.)

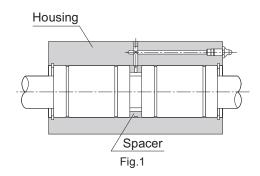
### Lubrication

The Guide Ball Bushing requires grease or oil as a lubricant for its operation.

#### [Grease Lubrication]

Before mounting the product onto the LG shaft, apply grease to each row of balls inside the Guide Ball Bushing.

Thereafter apply grease as necessary, in accordance with usage and other conditions noted above, or attach housing as shown in Fig.1, or apply grease directly to the LG shaft.


We recommend using high-quality lithium-soap group grease No. 2.

#### [Oil Lubrication]

To lubricate, apply lubricant to the LG shaft one drop at a time, as needed, or attach housing as shown in Fig.1, in the same manner as when lubricating with grease.

Commonly used lubricants include turbine oil, machine oil, and spindle oil.

In addition to the procedures described the above, an oil hole or grease nipple can also be used for lubrication. For further information, contact THK.



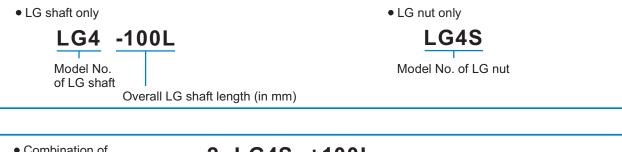
# **Dust prevention**

Entrance of dust or other foreign material into the Guide Ball Bushing will cause abnormal wear or shorten the service life. When entrance of dust or other foreign material is a possibility, it is important to select effective seals and/or dust-control device that meets the service environment conditions. In addition, THK produces round bellows. Contact us for details.

### Model No.

### **Guide Ball Bushing**

### **Model Number Coding**


Model number configurations differ depending on the model features. Refer to the corresponding sample model number configuration.

#### [Guide Ball Bushing]

Estimates and orders should be made for LG shafts alone or LG nuts alone in principle.

A set consisting of an LG shaft and an LH nut is also available if desired by the customer. Contact THK for details.

#### Models LG-S and LG-L



 Combination of LG shaft and LG nut



A special radial clearance, designated grease application (standard product is applied with antirust oil only), and surface treatment (THK AP-C treatment, THK AP-CF treatment, THK AP-HC treatment) are also available. Contact THK for details.

#### [Handling]

- (1) Disassembling each part may cause dust to enter the system or degrade mounting accuracy of parts. Do not disassemble the product.
- (2) Take care not to drop or strike the Guide Ball Bushing. Doing so may cause injury or damage. Giving an impact to it could also cause damage to its function even if the product looks intact.
- (3) When handling the product, wear protective gloves, safety shoes, etc., as necessary to ensure safety.

#### [Precautions on Use]

- (1) Prevent foreign material, such as cutting chips or coolant, from entering the product. Failure to do so may cause damage.
- (2) If the product is used in an environment where cutting chips, coolant, corrosive solvents, water, etc., may enter the product, use bellows, covers, etc., to prevent them from entering the product.
- (3) Do not use the product at temperature of 80°C or higher. Exposure to higher temperatures may cause the resin/rubber parts to deform/be damaged.
- (4) If foreign material such as cutting chips adheres to the product, replenish the lubricant after cleaning the product.
- (5) Micro-strokes tend to obstruct oil film to form on the raceway in contact with the rolling element, and may lead to fretting corrosion. Take consideration using grease offering excellent fretting prevention. It is also recommended that a stroke movement corresponding to the length of the outer cylinder be made on a regular basis to make sure oil film is formed between the raceway and rolling element.
- (6) Do not use undue force when fitting parts (pin, key, etc.) to the product. This may generate permanent deformation on the raceway, leading to loss of functionality.
- (7) Insert the shaft straight through the opening. Inserting the shaft at an angle can introduce foreign matter, damage internal components, or cause balls to fall out.
- (8) Using this product with any balls removed may result in premature damage.
- (9) Please contact THK if any balls fall out; do not use the product if any balls are missing.
- (10) If an attached component is insufficiently rigid or mounted incorrectly, the bearing load will be concentrated at one location and performance will decline significantly. Make sure the housing and base are sufficiently rigid, the anchoring bolts are strong enough, and the component is mounted correctly.

#### [Lubrication]

- (1) Thoroughly wipe off anti-rust oil and feed lubricant before using the product.
- (2) Do not mix different lubricants. Mixing greases using the same type of thickening agent may still cause adverse interaction between the two greases if they use different additives, etc.
- (3) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, use the grease appropriate for the specification/environment.
- (4) To lubricate the product, apply lubricant directly to the raceway surface and execute a few preliminary strokes to ensure that the interior is fully lubricated.
- (5) The consistency of grease changes according to the temperature. Take note that the slide resistance of the Guide Ball Bushing also changes as the consistency of grease changes.

#### **Precautions on Use**

- (6) After lubrication, the slide resistance of the Guide Ball Bushing may increase due to the agitation resistance of grease. Be sure to perform a break-in to let the grease spread fully, before operating the machine.
- (7) Excess grease may scatter immediately after lubrication, so wipe off scattered grease as necessary.
- (8) The properties of grease deteriorate and its lubrication performance drops over time, so grease must be checked and added properly according to the use frequency of the machine.
- (9) The greasing interval varies depending on the use condition and service environment. Set the final lubrication interval/amount based on the actual machine.

#### [Assembling the LG Nut with the LG Shaft of the Guide Ball Bushing]

- (1) When assembling the LG nut with the LG shaft, align the position of the balls inside the LG nut with the position of the groove of the LG shaft, then insert the LG shaft into the LG nut straightforward and gradually. If the LG shaft is tilted when it is inserted, balls may bounce out or damage the circulating part.
- (2) If the LG shaft is stuck in the middle of insertion, do not force it into the nut. Instead, but pull it out first, re-check the ball position and the LG shaft groove position, and then insert it straightforward and gradually.
- (3) After assembling the LG nut with the LG shaft, check that the LG nut or the LG shaft smoothly moves. If the shaft was forced into the nut, function could be lost even if the product looks intact.

#### [Storage]

When storing the Guide Ball Bushing, enclose it in a package designated by THK and store it in a room while avoiding high temperature, low temperature and high humidity.

#### [Disposal]

Dispose of the product properly as industrial waste.

# **Features of the Linear Bushing**

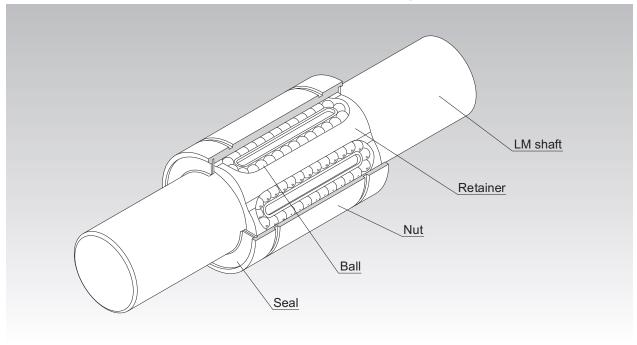



Fig.1 Structure of Linear Bushing Model LM···UU

#### **Structure and Features**

Linear Bushing model LM is a linear motion system used in combination with a cylindrical LM shaft to perform infinite straight motion. The balls in the loaded area of the nut are in point contact with the LM shaft. This allows straight motion with minimal friction resistance and achieves highly accurate and smooth motion despite the small permissible load.

The nut uses high-carbon chromium bearing steel and its outer and inner surfaces are ground after being heat-treated.

The Linear Bushing is used in a broad array of applications, such as slide units of precision equipment including OA equipment and peripherals, measuring instruments, automatic recorders and digital 3D measuring instruments, industrial machines including multi-spindle drilling machine, punching press, tool grinder, automatic gas cutting apparatus, printing machine, card selector and food packing machine.

#### **Features and Types**

**Features of the Linear Bushing** 

#### [Interchangeability]

Since the dimensional tolerances of the Linear Bush's components are standardized, they are interchangeable. The LM shaft is machined through cylindrical grinding, which can easily be performed, and it allows highly accurate fitting clearance to be achieved.

#### [Highly Accurate Retainer Plate]

Since the retainer, which guides three to eight rows of balls, is integrally molded, it is capable of accurately guiding the balls in the traveling direction and achieving stable running accuracy.

Small-diameter types use integrally molded retainers made of synthetic resin. It reduces noise generated during operation and allows for superb lubrication.

#### [Wide Array of Types]

A wide array of types are available, such as standard type, clearance-adjustable type, open type, long type, fitted flange type, and flanged linear bushing, allowing the user to select a type that meets the intended use.

# Types of the Linear Ball Bushing

### **Types and Features**

# **Standard Type**

With the Linear Bushing nut having the most accurate cylindrical shape, this type is widely used.

There are two series of the Linear Bushing in dimensional group.

- Model LM Metric units series used most widely in Japan
- Model LM-MG Stainless steel version of type LM
- Model LME
   Metric units series commonly used in Europe

#### Specification Table⇒A4-44/A4-48/A4-50



Standard Type

### **Open Type**

The nut is partially cut open by one row of balls (50° to 80°). This enables the Linear Bushing to be used even in locations where the LM shaft is supported by a column or fulcrum. In addition, a clearance can easily be adjusted. Models LM-OP/LME-OP Model LM-MGA-OP

Specification Table⇒A4-44/A4-48/A4-50



Open Type

### **Clearance-adjustable Type**

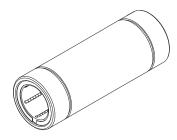
This type has the same dimensions as the standard type, but the nut has a slit in the direction of the LM shaft. This allows the linear bushing to be installed in a housing whose inner diameter is adjustable, and enables the clearance between the LM shaft and the housing to easily be adjusted.

Models LM-AJ/LME-AJ Model LM-MG-AJ Specification Table⇒A4-44/A4-48/A4-50



Clearance-adjustable Type

#### **Features and Types**


Types of the Linear Ball Bushing

### **Long Type**

Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present and reduces man-hours in installation.

Model LM-L····Standard type

#### Specification Table⇒A4-52



Long Type

# Flanged Type (Round)

The nut of the standard type Linear Bushing is integrated with a flange. This enables the Linear Bushing to be directly mounted onto the housing with bolts, thus achieving easy installation.

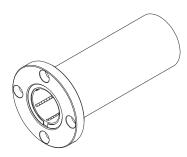
Model LMF·····Standard type

Model LMF-M·····Made of stainless steel

#### Specification Table⇒A4-54/A4-56



Flanged Type (Round)


# Flanged Type (Round) - Long

The nut of the long type Linear Bushing is integrated with a flange. This enables the Linear Bushing to be directly mounted onto the housing with bolts, thus achieving easy installation. Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

Model LMF-L····Standard type

Model LMF-ML·····Made of stainless steel

#### Specification Table⇒A4-58/A4-60



Flanged Type (Round) - Long


# Flanged Type (Square)

Like model LMF, this type also has a flange, but the flange is cut to a square shape. Since the height is lower than the circular flange type, compact design is allowed.

Model LMK·····Standard type

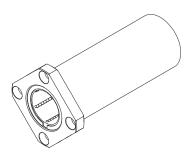
Model LMK-M·····Made of stainless steel

#### Specification Table⇒A4-62/A4-64



Flanged Type (Square)

# Flanged Type (Square) - Long


Like model LMF-L, this type also has a flange, but the flange is cut to a square shape. Since the height is lower than the circular flange type, compact design is allowed.

Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

Model LMK-L·····Standard type

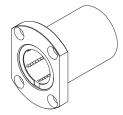
Model LMK-ML·····Made of stainless steel

#### Specification Table⇒A4-66/A4-68



Flanged Type (Square) - Long

#### **Features and Types**


Types of the Linear Ball Bushing

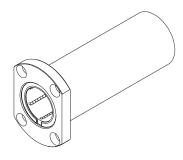
# Flanged Type (Cut Flange)

The nut is integrated with a cut flange. Since the height is lower than model LMK, compact design is allowed. Since the rows of balls in the Linear Bushing are arranged so that two rows receive the load from the flat side, a long service life can be achieved.

Model LMH·····Standard type

#### Specification Table⇒A4-70




Flanged Type (Cut Flange)

# Flanged Type (Cut Flange) - Long

The flange is a cut flange and lower than model LMK-L, allowing compact design. Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present. Since the rows of balls in the Linear Bushing are arranged so that two rows receive the load from the flat side, a long service life can be achieved.

Model LMH-L·····Standard type

#### Specification Table⇒A4-72



Flanged Type (Cut Flange) - Long

# Fitted Flanged Type (Round)

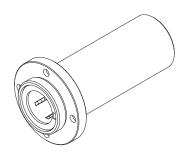
Since the fitted part is short, the linear bushing tends not to protrude into the other side, so space is saved on the side opposite the mounting.

Model LMIF ..... Standard type

#### Specification Table⇒A4-74



Fitted Flanged Type (Round)


## Fitted Flanged Type (Round) - Long

Since the fitted part is short, the linear bushing tends not to protrude into the other side, so space is saved on the side opposite the mounting.

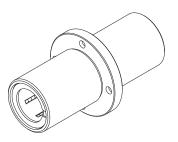
Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

Model LMIF-L ..... Standard Type

#### Specification Table⇒**△4-76**



Fitted Flanged Type (Round) - Long


# Center Flanged Type (Round) - Long

Specification Table⇒A4-78

Since an LMIF-L flange is installed in the center for this type and and work can be attached close to the center of the linear bushing unit, both load and space are distributed on both sides of the flange in a balanced manner. This is a good solution for when you want to make the stroke equal on the left and right.

Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

Model LMCF-L ..... Standard Type



Center Flanged Type (Round) - Long



## **Features and Types**

Types of the Linear Ball Bushing

# **Fitted Flanged Type (Square)**

Like model LMIF, this type also has a flange, but the flange is cut to a square shape. The height is lower than the circular flange type, allowing a compact design.

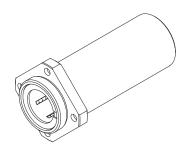
Model LMIK · · · · Standard Type

### Specification Table⇒A4-80



Fitted Flanged Type (Square)

# Fitted Flanged Type (Square) - Long


Like model LMIF-L, this type also has a flange, but the flange is cut to a square shape. The height is lower than the circular flange type, allowing a compact design.

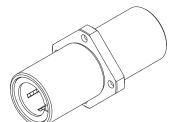
Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

Model LMIK-L ..... Standard Type

# Specification Table⇒A4-82

Specification Table⇒A4-84




Fitted Flanged Type (Square) - Long

# Center Flanged Type (Square) - Long

Like model LMCF-L, this type also has a flange, but the flange is cut to a square shape. The height is lower than the circular flange type, allowing a compact design.

Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

Model LMCK-L ..... Standard Type



Center Flanged Type (Square) - Long

# **Fitted Flanged Type (Ovular)**

This type features a flange cut into an ovular shape. The height is lower than model LMIF, allowing a compact design.

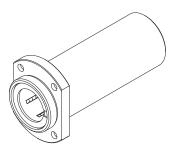
Because the rows of Linear Bushing balls are arranged such that flat loads are borne in two rows, superior lifetime is achieved.

Model LMIH · · · · Standard Type

#### Specification Table⇒A4-86



Fitted Flanged Type (Ovular)


# Fitted Flanged Type (Ovular) - Long

This type features a flange cut into an ovular shape. The height is lower than model LMIF-L, allowing a compact design. Because the rows of Linear Bushing balls are arranged such that flat loads are borne in two rows, superior lifetime is achieved.

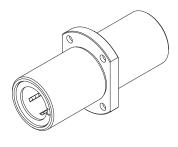
Standard type retainers are embedded together in groups of two, making them ideal for areas with moment loads.

Model LMIH-L ..... Standard Type

## Specification Table⇒**△4-88**



Fitted Flanged Type (Ovular) - Long


# Center Flanged Type (Ovular) - Long

This type features a flange cut into an ovular shape. The height is lower than Model LMCF, allowing a compact design. Because the rows of Linear Bushing balls are arranged such that flat loads are borne in two rows, superior lifetime is achieved.

Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

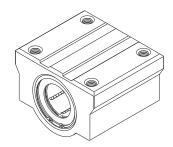
Model LMCH-L ..... Standard Type

Specification Table⇒A4-90



Center Flanged Type (Ovular) - Long



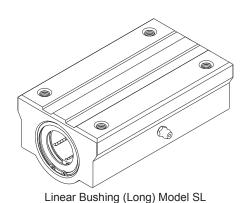

## **Features and Types**

Types of the Linear Ball Bushing

# **Linear Bushing Model SC**

It is a case unit where the standard type of Linear Bushing is incorporated into a small, light-weight aluminum casing. This model can easily be mounted simply by securing it to the table with bolts.

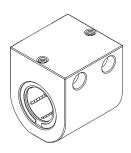
### Specification Table⇒A4-92




Linear Bushing Model SC

# Linear Bushing (Long) Model SL

A long version of model SC, this model contains two units of the standard type Linear Bushing in an aluminum casing.

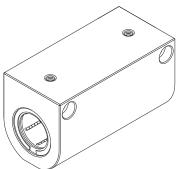

## Specification Table⇒A4-96



# **Linear Bushing Model SH**

It is a case unit where the standard type of Linear Bushing is incorporated into a smaller and lighter aluminum casing than model SC. This model allows even more compact design than model SC. It also has flexibility in mounting orientation. Additionally, it is structured so that two rows of balls receive the load from the top of the casing, allowing a long service life to be achieved.

## Specification Table⇒A4-98




Linear Bushing Model SH

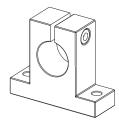
# Linear Bushing (Long) Model SH-L

A long version of model SH, this model is a case unit that contains two units of the standard type Linear Bushing in an aluminum casing.

## Specification Table⇒**△4-100**



Linear Bushing (Long) Model SH-L


## **Features and Types**

Types of the Linear Ball Bushing

# LM Shaft End Support Model SK

An aluminum-made light fulcrum for securing an LM shaft. The LM shaft mounting section has a slit, enabling the linear bushing to firmly secure an LM shaft using bolts.

## Specification Table⇒A4-102



LM Shaft End Support Model SK

# **Standard LM Shafts**

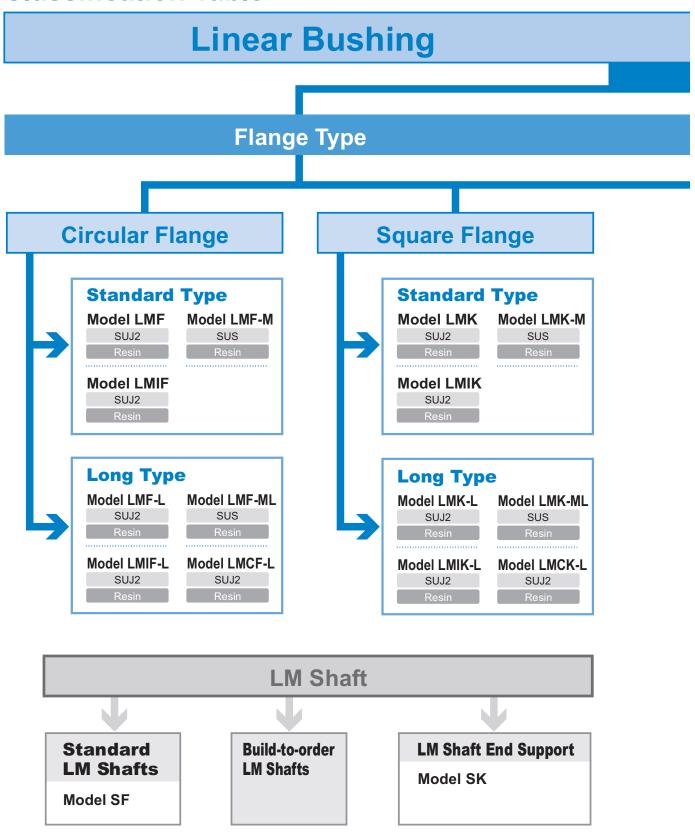
THK manufactures high quality, dedicated LM shafts for Linear Bushing model LM series.

# Specification Table⇒A4-104



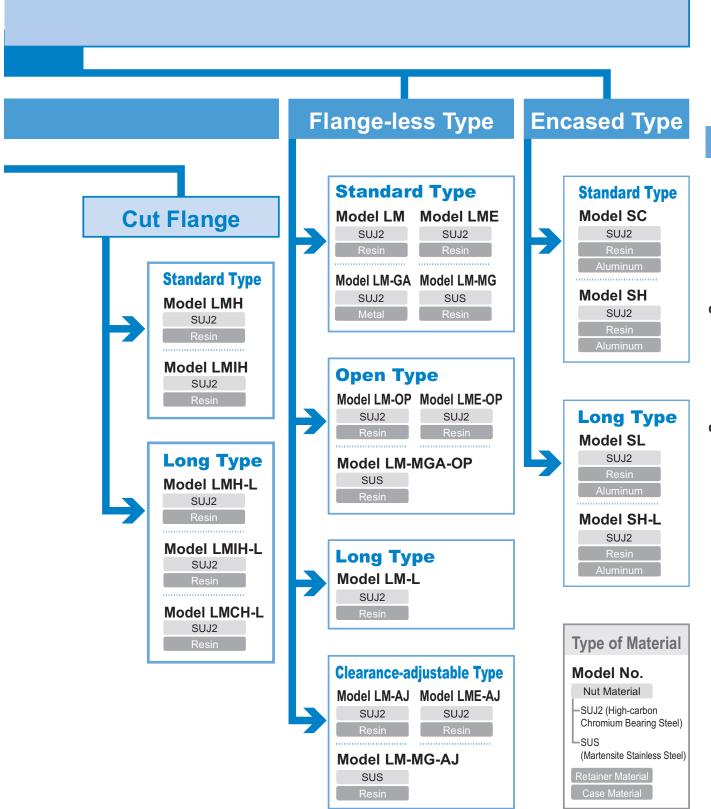
Standard LM Shafts

# **Build-to-order LM Shafts**


THK also manufactures hollow LM shafts and specially machined shafts at your request.

#### Specification Table⇒A4-103

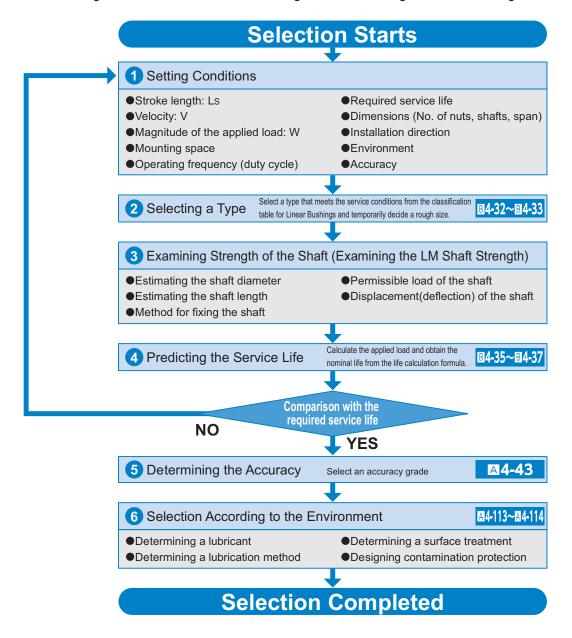



Build-to-order LM Shafts

# **Classification Table**



## **Features and Types**


**Classification Table** 



# Flowchart for Selecting a Linear Bushing

# **Steps for Selecting a Linear Bushing**

The following flowchart should be used as a guide for selecting a Linear Bushing.



#### **Point of Selection**

#### **Rated Load and Nominal Life**

# **Rated Load and Nominal Life**

## [Load Rating]

The rated load of the Linear Bushing varies according to the position of balls in relation to the load direction. The basic load ratings indicated in the specification tables each indicate the value when one row of balls receiving a load are directly under the load.

If the Linear Bushing is mounted so that two rows of balls evenly receive the load in the load direction, the rated load changes as shown in Table1.

Table1 Rated load of the Linear Bushing

| Rows of balls | Ball position | Load Rating |
|---------------|---------------|-------------|
| 3 rows        |               | 1×C         |
| 4 rows        |               | 1.41×C      |
| 5 rows        |               | 1.46×C      |
| 6 rows        |               | 1.28×C      |

For specific values for "C" above, see the respective specification table.

#### [Calculating the Nominal Life]

The nominal life of the Linear Bushing is obtained using the following equation.

$$L = \left(\frac{f_{\text{H}} \cdot f_{\text{T}} \cdot f_{\text{C}}}{f_{\text{W}}} \cdot \frac{C}{P_{\text{C}}}\right)^{3} \times 50$$

L : Nominal life (km)
C : Basic dynamic load rating (N)  $P_c$  : Calculated load (N)  $f_T$  : Temperature factor (see Fig.2 on **E4-37**)  $f_c$  : Contact factor (see Table2 on **E4-37**)  $f_w$  : Load factor (see Table3 on **E4-37**)

 $f_H$ : Hardness factor (see Fig.1)

### When a Moment Load is Applied to a Single Nut or Two Nuts in Close Contact with Each Other

When a moment load is applied to a single nut or two nuts in close contact with each other, calculate the equivalent radial load at the time the moment is applied.

$$P_u = K \cdot M$$

P<sub>u</sub> : Equivalent radial load

(N)

(with a moment applied)

K : Equivalent factors

(see Table4 to Table6 on 44-42)

M : Applied moment (N-mm)

However, "P<sub>u</sub>" is assumed to be within the basic static load rating (C₀).

## When a Moment Load and a Radial Load are Simultaneously Applied

When a moment and a radial load are applied simultaneously, calculate the service life based on the sum of the radial load and the equivalent radial load.

#### ■f<sub>H</sub>: Hardness Factor

To maximize the load capacity of the Linear Bushing, the hardness of the raceways needs to be between 58 to 64 HRC.

If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor ( $f_{\rm H}$ ).

Normally,  $f_H$  = 1.0 since the Linear Bushing has sufficient hardness.

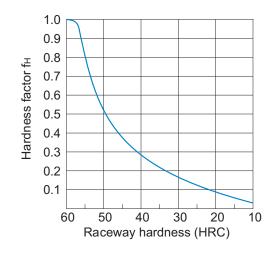



Fig.1 Hardness Factor (f<sub>H</sub>)

### **Point of Selection**

#### **Rated Load and Nominal Life**

#### ■f<sub>T</sub>:Temperature Factor

If the temperature of the environment surrounding the operating Linear Bushing exceeds 100°C, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.2.

Also note that the Linear Bushing itself must be of high temperature type.

Note) If the environment temperature exceeds 80°C, use a Linear Bushing type equipped with metal retainer plates.

# ■fc: Contact Factor

When multiple nuts are used in close contact with each other, their linear motion is affected by moments and mounting accuracy, making it difficult to achieve uniform load distribution. In such applications, multiply the basic load rating (C) and ( $C_0$ ) by the corresponding contact factor in Table2.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table2.

# 1.0 0.9 0.8 0.7 0.6 0.5 100 150 200 Raceway temperature (°C)

Fig.2 Temperature Factor (f<sub>T</sub>)

Table2 Contact Factor (fc)

| Number of nuts in close contact with each other | Contact factor fc |
|-------------------------------------------------|-------------------|
| 2                                               | 0.81              |
| 3                                               | 0.72              |
| 4                                               | 0.66              |
| 5                                               | 0.61              |
| Normal use                                      | 1                 |

#### ■fw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop motion. Therefore, when loads applied on a Linear Bushing cannot be measured, or when speed and impact have a significant influence, divide the basic load rating (C) or (C<sub>0</sub>) by the corresponding load factor in Table3.

Table3 Load Factor (fw)

| Vibrations/<br>impact | Speed(V)                                                  | f <sub>w</sub> |
|-----------------------|-----------------------------------------------------------|----------------|
| Faint                 | Very low<br>V≦0.25m/s                                     | 1 to 1.2       |
| Weak                  | Slow<br>0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m> | 1.2 to 1.5     |
| Medium                | Medium<br>1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>    | 1.5 to 2       |
| Strong                | High<br>V>2m/s                                            | 2 to 3.5       |

## [Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

$$L_h = \frac{L \times 10^3}{2 \times \ell_s \times n_1 \times 60}$$

L<sub>h</sub> : Service life time (h)

 $\ell_{\rm S}$  : Stroke length (m)

n<sub>1</sub>: Number of reciprocations per minute

(min⁻¹)

# Precautions To Be Taken if an Eccentric Load Is Applied

Since Linear Bushing is not suitable for application of an eccentric load, we recommend using Guide Ball Bushing or Ball Spline.



# Mounting Procedure and Maintenance

**Linear Bushing** 

# **Assembling the Linear Bushing**

# [Inner Diameter of the Housing]

Table1 shows recommended housing inner-diameter tolerance for the Linear Bushing. When fitting the Linear Bushing with the housing, loose fit is normally recommended. If the clearance needs to be smaller, provide transition fit.

Table1 Housing Inner-diameter Tolerance

| Туре      |                                 | Housing   |                |  |
|-----------|---------------------------------|-----------|----------------|--|
| Model No. | Accuracy                        | Loose fit | Transition fit |  |
| LM        | High accuracy grade (no symbol) | H7        | J7             |  |
|           | Precision Grade (P)             | H6        | J6             |  |
| LME       | _                               | H7        | K6, J6         |  |
| LMF       |                                 | H7        | J7             |  |
| LMK       | High accuracy<br>grade          |           |                |  |
| LMH       |                                 |           |                |  |
| LM-L      |                                 |           |                |  |
| LMF-L     |                                 |           |                |  |
| LMK-L     |                                 |           |                |  |
| LMH-L     |                                 |           |                |  |
| LMIF      |                                 |           |                |  |
| LMIK      | (no symbol)                     |           |                |  |
| LMIH      |                                 |           |                |  |
| LMIF-L    |                                 |           |                |  |
| LMIK-L    |                                 |           |                |  |
| LMIH-L    |                                 |           |                |  |
| LMCF-L    |                                 |           |                |  |
| LMCK-L    |                                 |           |                |  |
| LMCH-L    |                                 |           |                |  |

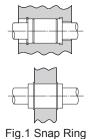
#### [Clearance between the Nut and the LM Shaft]

When using the Linear Bushing in combination with an LM shaft, use normal clearance in ordinary use and small gap if the clearance is to be minimized.

Note1) If the clearance after installation is to be negative, it is preferable not to exceed the radial clearance tolerance indicated in the specification table.

Note2) The shaft tolerance for Linear Bushing models SC, SL SH and SH-L falls under high accuracy grade (no symbol).

Table2 Shaft Outer-diameter Tolerance


| Туре      |                                       | LM Shaft         |           |  |
|-----------|---------------------------------------|------------------|-----------|--|
| Model No. | Accuracy                              | Normal clearance | Small gap |  |
| LM        | High accuracy grade (no symbol)       | f6, g6           | h6        |  |
|           | Precision Grade (P)                   | f5, g5           | h5        |  |
| LME       | -                                     | h7               | k6        |  |
| LMF       | High accuracy<br>grade<br>(no symbol) | f6, g6           | h6        |  |
| LMK       |                                       |                  |           |  |
| LMH       |                                       |                  |           |  |
| LM-L      |                                       |                  |           |  |
| LMF-L     |                                       |                  |           |  |
| LMK-L     |                                       |                  |           |  |
| LMH-L     |                                       |                  |           |  |
| LMIF      |                                       |                  |           |  |
| LMIK      |                                       |                  |           |  |
| LMIH      |                                       |                  |           |  |
| LMIF-L    |                                       |                  |           |  |
| LMIK-L    |                                       |                  |           |  |
| LMIH-L    |                                       |                  |           |  |
| LMCF-L    |                                       |                  |           |  |
| LMCK-L    |                                       |                  |           |  |
| LMCH-L    |                                       |                  |           |  |

### [Mounting the Nut]

Although the Linear Bushing does not require a large amount of strength for securing it in the axial direction, do not rely only on a press fit to support the nut. For the housing inner-diameter tolerance, see Table1 on **B4-39**.

#### Installing the Standard Type

Fig.1 and Fig.2 show examples of installing the standard type Linear Bushing. When securing the Linear Bushing, use snap rings or stopper plates.



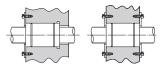



Fig.2 Stopper Plate



# **Mounting Procedure and Maintenance**

Assembling the Linear Bushing

#### ■Snap Ring for Installation

To secure Linear Bushing model LM, snap rings indicated in Table3 are available.

Note1) For models indicated with parentheses, use C-shape concentric snap rings.

Note2) The Table3 commonly applies to models LM, LM-GA, LM-MG and LM-L.

Table3 Types of Snap Rings

|           | Snap ring           |                   |                     |                   |
|-----------|---------------------|-------------------|---------------------|-------------------|
|           | For outer surface   |                   | For inner surface   |                   |
| Model No. | Needle snap<br>ring | C-shape snap ring | Needle snap<br>ring | C-shape snap ring |
| LM 3      | _                   |                   | AR 7                | _                 |
| LM 4      | _                   | 1                 | 8                   | _                 |
| LM 5      | WR 10               | 10                | 10                  | 10                |
| LM 6      | 12                  | 12                | 12                  | 12                |
| LM 8      | _                   | 15                | 15                  | 15                |
| LM 8S     | _                   | 15                | 15                  | 15                |
| LM 10     | 19                  | 19                | 19                  | 19                |
| LM 12     | 21                  | 21                | 21                  | 21                |
| LM 13     | 23                  | 22                | 23                  | _                 |
| LM 16     | 28                  | _                 | 28                  | 28                |
| LM 20     | 32                  |                   | 32                  | 32                |
| LM 25     | 40                  | 40                | 40                  | 40                |
| LM 30     | 45                  | 45                | 45                  | 45                |
| LM 35     | 52                  | 52                | 52                  | 52                |
| LM 38     | _                   | 56•58             | 57                  | _                 |
| LM 40     | _                   | 60                | 60                  | 60                |
| LM 50     | _                   | 80                | 80                  | 80                |
| LM 60     | _                   | 90                | 90                  | 90                |
| LM 80A    | _                   | 120               | 120                 | 120               |
| LM 100A   | _                   | (150)             | 150                 | _                 |
| LM 120A   | _                   | (180)             | 180                 | _                 |

#### ■Set Screws Not Allowed

Securing the nut by pressing the outer surface with one set screw as shown in Fig.3 will cause the nut to be deformed.

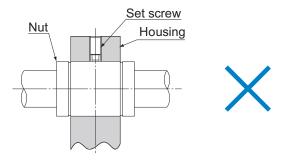
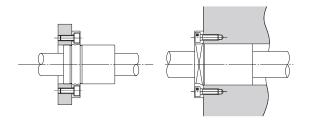
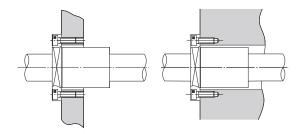





Fig.3

### Installing a Flanged Type

With models LMF, LMK, LMH, LMIF, LMCF, LMIK, LMCK, LMIH, and LMCH, the nut is integrated with a flange. Therefore, the Linear Bushing can be mounted only via the flange.





Mounted via socket and spigot joint

Mounted via a flange only

## Installing a Clearance-adjustable Type

To adjust the clearance of a clearance-adjustable type (-AJ), use a housing that allows adjustment of the nut outer diameter so as to facilitate the adjustment of the clearance between the Linear Bushing and the LM shaft. Positioning the slit of the Linear Bushing at an angle of 90° with the housing's slit will provide uniform deformation in the circumferential direction. (See Fig.4.)

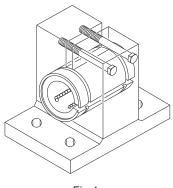



Fig.4

#### Mounting an Open Type

For an open type (-OP), also use a housing that allows adjustment of the nut outer diameter as shown in Fig.5.

Open types are normally used with a light preload. Be sure not to give an excessive preload.

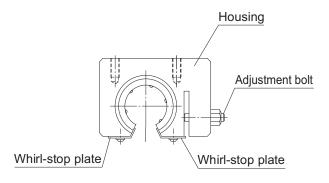
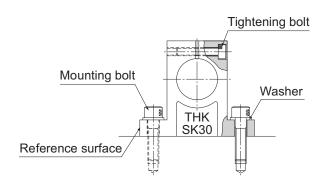



Fig.5




## **Mounting Procedure and Maintenance**

**Assembling the Linear Bushing** 

### [Mounting the Shaft End Support]

Shaft end support model SK can easily be secured to the table using mounting bolts. Model SK enables the LM shaft to firmly be secured using tightening bolts.



#### [Installing an LM Case Unit]

## Attaching Model SC (SL)

Since models SC and SL can be attached from the top or bottom by simply tightening it using bolts, the installation time can be shortened. (See Fig.6.)

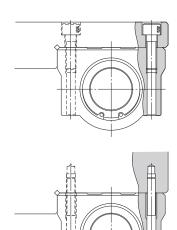
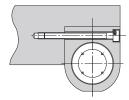




Fig.6

### Attaching Model SH (SH-L)

Since models SH and SH-L can be attached from the top or bottom by simply tightening it using bolts, the installation time can be shortened. (See Fig.7.)





Alternative installation

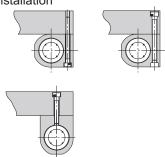



Fig.7

#### [Incorporating the Nut]

When incorporating the standard Linear Bushing into a housing, use a jig and drive in the nut, or use a flatter plate and gently hit the nut, instead of directly hitting the side plate or the seal. (See Fig.8.)

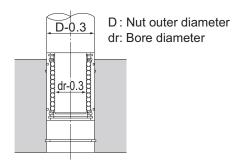



Fig.8

#### [Inserting the LM Shaft]

When inserting the LM shaft into the Linear Bushing, align the center of the shaft with that of the nut and gently insert the shaft straightforward into the nut. If the shaft is slanted while it is inserted, balls may fall off or the retainer may be deformed. (See Fig.9.)

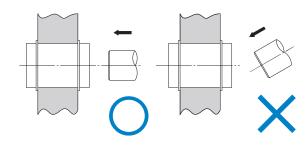



Fig.9

#### [When Under a Moment Load]

When using the Linear Bushing, make sure the load is evenly distributed on the whole ball raceway. In particular, if a moment load is applied, use two or more Linear Bushing units on the same LM shaft and secure an adequately large distance between the units.

If using the Linear Bushing under a moment load, also calculate the equivalent radial load and identify the correct model number. (See **E4-36**.)

## [Rotational Use Not Allowed]

The Linear Bushing is not suitable for rotational use for a structural reason. (See Fig.10.) Forcibly rotating it may cause an unexpected accident.

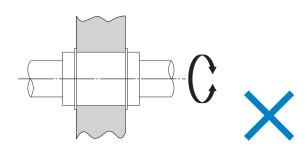



Fig.10



## **Mounting Procedure and Maintenance**

Lubrication

#### [Precautions on Installing an Open Three-ball-row Type Linear Bushing]

When installing an open three-ball-row type Linear Bushing, mount it while taking into account the load distribution as indicated in Fig.11.

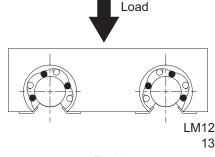



Fig.11

### [Attaching Felt Seal Model FLM]

The felt seal can be press-fit into a housing finished to H7, but cannot be used as a stopper for preventing the Linear Bushing from coming off. Be sure to use the felt seal by attaching it as indicated in the Fig.12.

Also make sure to impregnate the felt with sufficient lubricant before attaching it.

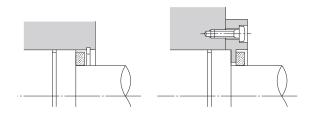



Fig.12

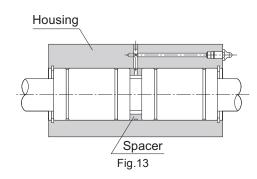
# Lubrication

The Linear Bushing requires grease or oil as a lubricant for its operation.

#### [Grease Lubrication]

Before mounting the product onto the LM shaft, apply grease to each row of balls inside the Guide Ball Bushing.

Thereafter apply grease as necessary, in accordance with usage and other conditions noted above, or attach housing as shown in Fig.13, or apply grease directly to the LM shaft.


We recommend using high-quality lithium-soap group grease No. 2.

#### [Oil Lubrication]

To lubricate, apply lubricant to the LM shaft one drop at a time, as needed, or attach housing as shown in Fig.13, in the same manner as when lubricating with grease.

Commonly used lubricants include turbine oil, machine oil, and spindle oil.

In addition to the procedures described the above, an oil hole or grease nipple can also be used for lubrication. For further information, contact THK.



# **Material and Surface Treatment**

For the Linear Bushing and the LM shaft, highly corrosion-resistant stainless steel types are available for some models.

Although the LM shaft can be surface treated, some types may not be suitable for the treatment. Contact THK for details.

#### **Options**

**Dust prevention** 

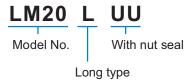
# **Dust prevention**

Entrance of dust or other foreign material into the Linear Bushing will cause abnormal wear or shorten the service life. When entrance of dust or other foreign material is a possibility, it is important to select effective seals and/or a dust-control device that meets the service environment conditions. For the Linear Bushing, a special synthetic rubber seal that is highly resistant to wear and a felt seal (highly dust preventive with low seal resistance) are available as contamination protection accessories.

In addition, THK produces round bellows. Contact us for details.

# Felt Seal Model FLM

●For detailed dimensions, see △4-114.


Linear Bushing model LM series include types equipped with a special synthetic rubber seal (LM··· UU, U). If desiring to have an additional contamination protection measure, or desiring to lower the seal resistance, use the felt seal model FLM.

# **Model Number Coding**

Model number configurations differ depending on the model features. Refer to the corresponding sample model number configuration.

#### [Linear Bushing]

 Plastic resin cages standard type models LM, LM-L, LME, LMF, LMF-L, LMK, LMK-L, LMH, LMH-L, LMIF, LMIK, LMIH, LMIF-L, LMIK-L, LMIH-L, LMCF-L, LMCK-L, LMCH-L, SC, SL, SH, SH-L

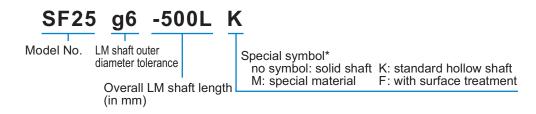


 Plastic resin cages Stainless steel type models LM-M, LM-MG, LMF-M, LMF-ML, LMK-M, LMK-ML



 Metal cage type models LM-GA, LM-MGA, LME-GA




#### [LM Shaft End Support]

Model SK

SK20 Model No.

## [LM Shaft]

Model SF



<sup>\*</sup>If two or more symbols are given, they are shown in an alphabetical order.

#### [Felt Seal]

Model FLM



# **Notes on Ordering**

For high temperature applications, a double-ended nut seal (symbol: UU) can be fitted to linear bushes for metal cages (symbol: A). However, cages without seals are recommended since the seal is only heat resistant to a temperature of 80°C.

<sup>\*</sup>For information shaft diameters, permissible shaft diameter error and standard stock lengths, see **A4-104**.

#### [Handling]

- (1) Disassembling each part may cause dust to enter the system or degrade mounting accuracy of parts. Do not disassemble the product.
- (2) Take care not to drop or strike the Linear Bushing. Doing so may cause injury or damage. Giving an impact to it could also cause damage to its function even if the product looks intact.
- (3) When handling the product, wear protective gloves, safety shoes, etc., as necessary to ensure safety.

#### [Precautions on Use]

- (1) Prevent foreign material, such as cutting chips or coolant, from entering the product. Failure to do so may cause damage.
- (2) If the product is used in an environment where cutting chips, coolant, corrosive solvents, water, etc., may enter the product, use bellows, covers, etc., to prevent them from entering the product.
- (3) Do not use the product at temperature of 80°C or higher. Exposure to higher temperatures may cause the resin/rubber parts to deform/be damaged.
- (4) If foreign material such as cutting chips adheres to the product, replenish the lubricant after cleaning the product.
- (5) Micro-strokes tend to obstruct oil film to form on the raceway in contact with the rolling element, and may lead to fretting corrosion. Take consideration using grease offering excellent fretting prevention. It is also recommended that a stroke movement corresponding to the length of the outer cylinder be made on a regular basis to make sure oil film is formed between the raceway and rolling element.
- (6) Do not use undue force when fitting parts (pin, key, etc.) to the product. This may generate permanent deformation on the raceway, leading to loss of functionality.
- (7) Insert the shaft straight through the opening. Inserting the shaft at an angle can introduce foreign matter, damage internal components, or cause balls to fall out.
- (8) Using this product with any balls removed may result in premature damage.
- (9) Please contact THK if any balls fall out; do not use the product if any balls are missing.
- (10) If an attached component is insufficiently rigid or mounted incorrectly, the bearing load will be concentrated at one location and performance will decline significantly. Make sure the housing and base are sufficiently rigid, the anchoring bolts are strong enough, and the component is mounted correctly.

#### [Lubrication]

- (1) Thoroughly wipe off anti-rust oil and feed lubricant before using the product.
- (2) Do not mix different lubricants. Mixing greases using the same type of thickening agent may still cause adverse interaction between the two greases if they use different additives, etc.
- (3) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, use the grease appropriate for the specification/environment.
- (4) To lubricate the product, apply lubricant directly to the raceway surface and execute a few preliminary strokes to ensure that the interior is fully lubricated.
- (5) The consistency of grease changes according to the temperature. Take note that the slide resistance of the Linear Bushing also changes as the consistency of grease changes.

#### **Precautions on Use**

- (6) After lubrication, the slide resistance of the Linear Bushing may increase due to the agitation resistance of grease. Be sure to perform a break-in to let the grease spread fully, before operating the machine.
- (7) Excess grease may scatter immediately after lubrication, so wipe off scattered grease as necessary.
- (8) The properties of grease deteriorate and its lubrication performance drops over time, so grease must be checked and added properly according to the use frequency of the machine.
- (9) The greasing interval varies depending on the use condition and service environment. Set the final lubrication interval/amount based on the actual machine.

#### [Storage]

When storing the Linear Bushing, enclose it in a package designated by THK and store it in a room while avoiding high temperature, low temperature and high humidity.

#### [Disposal]

Dispose of the product properly as industrial waste.